Detection of Chemical Exchange in Methyl Groups
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Introduction Enzyme Structure Estimation of Conformational Exchange (Rex)
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2( u 2 o8\ ( DE HDE) ] Figure 5. The 'H-'H dipole-dipole cross-correlated relaxation rate constant () is

AR’ = ( O) h°S’ T < > (2) RNase H Methyl Relaxation plotted relative to the multiple quantum relaxation rate, ARwmq, for (A) AlkB
5\4rx weee 1 methionines with successive co-factor and substrate complexes (Zn, 20G and

7(;721 14—+ T DNA), and RNase H (B) lle, (C) Leu, (D) and Val at three temperatures (283, 300,

and 310 K). Colors for (A-D) are as in Figures 3 and 4, respectively. Residues
excluded from the regression are plotted with open symbols. For parts (B-D), only
i excluded residues are labeled. (E) Determination of populations and exchange rates
- for AlkB co-factor and substrate complexes [3]. (F) Activation energies (Ea)
determined from the slope of In[ARex] vs 1/T for RNase H residues 18261, V98y1,

and L103061.

- Conclusions
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1H-1H Dipole-Dipole Cross-Correlated Relaxation

0 2 1 e Conformational exchange can be detected on a per-residue basis by comparison
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(Rpa and Rzq) measured by the Hahn Echo (1) contains terms corresponding to the
intrinsic relaxation rate (2) and conformational exchange (3). Equation (2) can be
combined with that for the 'H-1H dipole-dipole cross-correlated relaxation rate (4) to
produce (5), which is a linear equation with slope defined by the term in outer
brackets.
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