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Motivation: Drug Development is a Long and Expensive Process

- _ Total

Cost $1.1B $230M $225M $500M $500M $75M $2.8B
Time 4.5Yr 1.0Yr 1.5Yr 2.5Yr 2.5Yr 1.5Yr >10Yr
I

$2.8B and >10 Years to Bring a Drug to Market

Original source: Developability assessment as an early de-risking tool for biopharmaceutical development, ). Zurdo, 2013, DOI: 10.4155/pbp.13.3 a
NVIDIA. I



Language Models are
Revolutionizing Discovery

Information from biomedical literature

Prediction of chemical reactions

Biomolecular property prediction

Structure prediction and docking
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From Sequence to 3D and Back Again

1 Fixed-backbone 2 Structure 3 Sequence 4 Sequence and
design Generation generation structure design
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Outline

Overview of BioNeMo: Inference Service and Training Framework

MolMIM: Development of a Small Molecule Foundation Model for Generation

Career Progression and Lessons from the Field

NVIDIA



BioNeMo Overview: Inference Se
Framework
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Multiple Interfaces to a BioNeMo Model in the Inference Service

Interactive Ul and Jupyter Workflows

APl and Python Client

Playground

Mode @

AlphaFold2

Select an Example UniProt 10 @

UniProt 10: 014763

Protein Sequence @

MEQRGONAPAASGARKI
PGP

Choose a model to generate sequence output. If you have a UniProt 1D, input It below or you can start with one of our provided example use cases.

Learn More

import requests

ngc_token NGC TOKEN
headers Authorizatior f"Bearer {ngc_token

6 try

response
requests post("http: api.stg.bionemo.ngc.nvidia. c« v1/prote
headers-headers
) json
max_length":150

S
In-generation-a

n-generation-p.

itting-predictor..

|-screening-pip...

pooks-dev / python-client /

Last Modified
5 days ago

5 days ago

4 days ago

4 days ago

2 hours ago

43 minutes ago

" task-fitting-predictor.ipynb X

#! virtual-screening-pipeline.i X

] » m C » Code v B

End-to-End Virtual Screening Pi

This example notebook shows how to connect BioNe|
infuse our workflow with Al at every step, from ligand
enabled by NVIDIA's BioNeMo framework for Large

NVIDIA BioNeMo Service homepage at https://www.r

Let's break down the key steps of a virtual screening
enabled in BioNeMo.

from bionemo. import BionemoClient

api = BionemoClient()

novel_proteins = (max_length=200, nt

folded_protein

(novel_proteins["gs

NVIDIA



2 NVIDIA. NGC | BioNeMo Service

BioNeMo Service

Welcome to BioNemo!

Get started with a model below. Explore documentation for more information.

Get Started with BioNemo

Protein Generation / Protein Embedding Molecule Generation
These models generate proteins with a sequence distribution that These models generate protein embeddings. They take an amino Given a seed molecule, these models can generate similar molecules
& mirrors the distribution of proteins on which the model was trained. & acid sequence and returns a learned representation. &

MegaMolBART

Molecule Embedding Protein Folding Docking
These models generate embeddings for a given molecule: These models predict the 3D structure of a protein from only the These models take a molecule structure and a protein structure and

MegaMolBART ‘ ESMFold ‘ ‘ OpenFold ‘ l AlphaFold-2 ‘

Documentation

[E] Documentation
E Learn more about using NeMo LLM and dive deep with tutorials, how-to guides ! il I
and examples.

Generate an APl Key
Authenticate your identity while making queries to NeMo LLM via the REST
APl

L

£ Generate AP| Key




SANVIDIA.  NGC| BioNeMo LLM Service

BioNeMo Service

P|aygr0und E Documentation  © Learn More

Molecule Generation Mole

ule Embedding  Protein Folding  Docking

Choose a model to generate sequence output. If you have a Compound CID, input it below or you can start with one of our provided example use cases.

Model Output 1 of 40

OpenFold 4 Sequence of 7WZF | Struc.. ¢ Chain < l:YunM g A S @ @ Structure

MASDGKAJSFLG:(NI\LHHFELK;\NDFLKGA!IDFLKGAJAHSGDF ‘SAGFHJDJrISHJDHJJHJHJJHJJJJJHGAHSDGHESHDGJHFGASJHDGFJAKHSEFJHJHAGSJHSDASJLDHALSJNJAHAH 7WZF | Structural and mechanism a 1

ASK JGAKSN\IKASJDFNV USNRIAVNRVAKJRN)IEURNANDSNALSKDNGALSNFVADJFNVAFVARHVARNAVLKNF\/ALDFNVAKLDNFGLAKSDrNELAKNUVERBVADYFBAHJHHJHJHSDFH

Enter a PDB ID

Type | Assembly

31
MASDBKAJSFLGK‘IALKMFGLKANDFLKGAMDFLKGAJAHSGDFJSAG

AsmID | 1:Author Defined Asse.
Or
Select an Example PDB 1D () Dynamic Bonds X Off
&) G|
Hput & & Measurements
MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLT N
il Q' Structure Motif Search
KSPSLNAAAKSELDKAIGRNTNGVITKDEAEK
LFNQDVDAAVRGILRNAKLKPVYDSLDAVRR %= @ Components TWZF
AALINMVFQMGETGVAGFTNSLRMLQQKRW = i 0P + Add i
DEAAVNLAKSRWYNQTPNRAK... & i ; &
Asm ID Cartoon | ® | [] | e
Ligand Ball & Stick D | [] | e
MSA Options
Water Ball & Stick = @ | [ | eee
No MSA will be generated. We recommend uploading
an MSA for better results. Unit Cell P6322 x| wee
+ Density

O Quality Assessment

O Assembly Symmetry

Export Models

Export Animation

Q@B

Export Geometry

&

Clear | (@ Outputs displayed here are not saved. Download the output if you would like to keep it. Learn more X > Give Feedback /> View Code ‘ l [4 Expand ‘




SANVIDIA.

BioNeMo Service

NGC | BioNeMo LLM Se

Lab

Protein G ation rotein Embedding Molecule ation Molecule Embedding Protein Folding Docking

Choose a model to generate sequence output. If you have a PDB ID, input it below or you can start with one of our provided example use cases.

Model @ Output @
OpenFold

View Code

Enter a UniProt ID @

Or
Select an Example UniProt ID @

Protein Sequence @

Perform MD Refinement @
Brief description of what this does Q@
LG Learn how to integrate the AP into your application
Upload an MS. choose no MSA. One will be auta-generated g y pp
if you take no action. Click to generate a new APl key.

Choose MSA Option

E Documentation

1 Learn More




<A NVIDIA. NGC | BIONEMO SERVICE

playground ] Documentation
Choose a model to generate molecules. If you have a Chemical CID, input it below or you can start with one of our provided example use cases. Learn More
Model ©® output @
MoFlow 1.00

Select an Example CID ©

Examples
Dicloxacillin { s y
‘ 0.80
smiLes © 73 of 510 chars
Cclonc(- 0.84 0.79 0.72 0.70 0.69

c2c(Cl)ccec2Cl)c1C(=0)N[C@@H]1C(=0)N2[C
@@H]1SC(C)(C)IC@@HI2Cc(=0)0

JUE[IWIS Ojowiue]

Number of Molecules ©

20

Sample Temperature ©

0.20 0.35 y

N

'S
>

Clear Give Feedback




<ANVIDIA. NGC | BIONEMO SERVICE

playground Documentation

Choose a model to generate docking poses. Provide a molecule and a target protein file. Learn More

Model ©® Output ®

DiffDock = «%» Center Pose ¥) Reset View
View All Poses < >
Molecule © Rank: 1 Score:
Ensitrelvir_analog X -0.567

® Rank: 2 Score:
Target Protein -0.769
SARS_CoV_2 MPro X
Rank: 3 Score:

-0.789

Rank: 4 Score:

G ted P
enera oses (D 1155

Rank: 5 Score:

-1.254
Diffusion Steps (O
Rank: 6 Score:
-1.621

Diffusion Time Divisions (D R1a2§5 7 Score:
20
Rank: 8 Score:

-2.039

Rank: 9 Score:
-2.144

Rank: 10 Score:
-2.184

Rank: 11 Score:
-2.372

Rank: 12 Score:
-2.576

Rank: 13 Score:

Clear Give Feedback View Code




BioNeMo Framework Overview

* Includes dataset processing, training, fine tuning, and
example downstream tasks

Data Distributed Accelerated
Processing Training Inference * Support for multi-GPU and multi-node training
L1l | ! ﬂ  Data parallelism, and three types of model parallelism
e
-»> 9 5
D0 oA P
S O . .
| 1] o * Currently three LLM models for cheminformatics and
protein applications — more models and model types
coming soon

ZFnviDIA I



BioNeMo Framework Technology Stack

T e ] del * Based on NVIDIA NeMo, which is a library for
Predictive Models Generative Models development and training of LLMs

* Automated deployment with Triton isin progress

Surface Develop
NVIDIA NVIDIA
Technology Technology

PyTorch/Lightning

NVIDIA GPUs

* Surface and develop new software and hardware
technology

ANVIDIA. I



MolMIM: Development of a Small M
Model for Generation




Motivation: Drug Development is a Long and Expensive Process

- _ Total

Cost $1.1B $230M $225M $500M $500M $75M $2.8B
Time 4.5Yr 1.0Yr 1.5Yr 2.5Yr 2.5Yr 1.5Yr >10Yr
I

$2.8B and >10 Years to Bring a Drug to Market

Original source: Developability assessment as an early de-risking tool for biopharmaceutical development, ). Zurdo, 2013, DOI: 10.4155/pbp.13.3 a
NVIDIA. I



Lead Discovery: Three Years for Design-Make-Test-Analyze Cycle

Hit Compound

Known or experimentally
determined

Weakly active
Target unselective
Toxicity risk

Low metabolic stability

Analyze

Multiple of DMTA cycles at 4-6 weeks/cycle
Transition between multiple labs

Candidate Drug

Highly potent
Effective for in vivo models
Metabolically stable

No toxicity issues

< NVIDIA I



Autoencoder

Variational
Autoencoder (VAE)

Autoencoder Models in a Nutshell

X ENCODER o 7 > DECODER . %
Gﬁ F, I
Input-lmage Latent-Vector Predicted-Image from Z
P(Z|X) Generated from X P(X: )
Wean
. z,
X ENCODE’R == Z DECODER " >
| B(21X) Pi(X|2) =
- Z(r
Input-Image = Sampled Predicted-image from Z
Latent-Vector

Variance or
Standard Deviation

Sample a point from G(Z,,, Z,)
Z=p+o0@e
€ N(O, 1)

follow a Standard Normal Distribution

Latent

Distribution
Latent-Variables to

Also works
with
sequences --
seq2seq
models

<ANVIDIA I



Cheminformatics Foundation Model Objectives

Representation and Translation Generation

New Molecule

Encoder Decoder Encoder Decoder

Encoder

Molecule

Molecule

Molecule

New Molecule

A NVIDIA I




SMILES: a Natural Language Representation of Small Molecules

COc1cce2n c(S (=O) Cc3ncce(C) ¢(OC )c3C) [nH]c2c
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MegaMoIBART Molecule Representations

MegaMoIBART is a sequence-to-sequence developed in
collaboration with AstraZeneca

Based on BART NLP model
Trained on 1.5B small molecules in SMILES format
Useful for representation and sequence translation tasks

Not well suited for generation tasks -- lacks an organized
and uniformly shaped latent space

Predicted
A CC(~0)0c1ccccc1C(~0)0 SMILES
O\_On
Ao
Y )
~”
COL-00x Scx (-0
NVIDIA Library
Decoder

Encoder

Positional @_EB E Positional
Encoding Encoding

[ Encoder Decoder ]
Embedding Embedding
Tokenized Tokenized
SMILES CC(=0)0c1ccccclC(=0)0 CC(~0)0clccceclC(=0)0 SMILES

Chemformer publication: Irwin, R., et al, Mach. Leam.: Sci. Technol. 3 (2022). 22
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Autoencoder Models in a Nutshell

X .| ENCODER o 7 . | DECODER N %
Autoencoder |G F,
Input-lmage Latent-Vector Predicted-Image from Z
P(Z|X) Generated from X P(X: )
Mesn
e z,
| ENCODER == DECODER " >
B N
.,/ Zy
Input-image // Sampled Predicted-Image from Z
. . = L Latent-Vector
Variational Variance or
Standard Deviation
Autoencoder (VAE) —
Sample a point from G(Z,,, Z,) ZIA
Z=p+oQ@e
e ~N(0,1) =
Z Latent
g Distribution
) Latent-Variables to

follow a Standard Normal Distribution

A NVIDIA I



Development of MolMIM for Molecule Generation

NxD

embeddings

.

Perceiver |_|

encoder

latent distribution

CCCCNC(=0)COc1cc(C(C)C)cee1C

/

Fixed sized and
organized latent
space

KxD

latent
code

/

BART
decoder

.

CCCCNC(=0)COc1cc(C(C)C)ece1C

A. Jaegle, etal., ArXiv (2021).

I



A Clustered Latent Space with Mutual Information Machine

* Mutual information machine (MIM) has a loss function that
maximizes mutual information and minimizes marginal entropy

NxD

* MIM loss results in a clustered space while variational
autoencoder (VAE) loss smooths the latent space resulting in

blurring Perceiver

encoder

0)COc1cc(C(C)C)ccc1C

CCCCNC(

embeddings

latent distribution

Y
s'e

latent
code

" R

BART
decoder

M. Livne, K. Swersky, D. J. Fleet, ArXiv (2019). 25

0)COc1cc(C(C)C)ccciC

CCCCNC(
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MolMIM - Sampling Distance Can Be Tuned for Similarity

Small Perturbations

— r
_r.--"'\\.l_ __;'I 1‘_.--"'\\\I___.-'I
SN )~ )
.LI(* =\ N ot ﬁ_{f" N
W '.,___‘_,/ N '-.___/
Seed Sampled
Molecule Molecule

5

M=

Seed
Molecule

=

!
H—t

Larger Perturbations

g .'.I
O
.?" _\\_ H -\.'
- \_/
Sampled
Molecule

Similarity
Map
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Measuring the Controllability of MolMIM Generation

Generation 1 Generation 2 Generation 3

* Hypothesis: having a structured latent space will improve
performance of property guided optimization

* Chose covariance matrix adaptation (CMA-ES), which is a zeroth
order optimization method

* CMA-ES is non-parametric and uses only a single scoring function Generation 4 Generation 5 Generation 6
per sample —

N.Hansen, A. Ostermeier, Evol. Comput. 9, 159-195 (2001). 27  +Arima



Multi-Objective Property Optimization

Performed multi-objective optimization to jointly optimize two
molecule properties (QED, SA) and binding to two protein targets
(JNK3, GSK4B)

Novelty is proportion of molecules with similarity metric (0.0 — 1.0) less

than < 0.4 relative to any other molecule

Diversity is average similarity across all compounds

MolMIM is competitive for success and diversity, but novelty has room

for improvement

Model QED +SA + JNK3 + GSK4B
Success (%) Novelty (%) Diversity

RationaleRL 74.8 56.1 0.621
MARS 923 824 0.719
JANUS 100 326 0.821
FaST 100 100 0.716
MolMIM (R) 97.5 711 0.791
MolMIM (A) 9%.6 633 0.807
MoIMIM (E) 98.3 55.1 0.767
MolMIM (E)* 99.2 54.8 0.772

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021)
QED, SA, JNK3, and GSK4B oracles from Therapeutic Data Commons

28
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MolMIM: Research to Productization

ar (1\/ > cs > arXiv:2208.09016 Hor Aaree]

Computer Science > Machine Learning

[Submitted on 18 Aug 2022 (v1), last revised 29 Mar 2023 (this version, v2)]
Improving Small Molecule Generation using Mutual Information Machine
Danny Reidenbach, Micha Livne, Rajesh K. llanga, Michelle Gill, Johnny Israeli

We address the task of controlled generation of small molecules, which entails finding novel molecules with desired properties under

certain constraints (e.g., similarity to a reference molecule). Here we introduce MoIMIM, a probabilistic auto-encoder for small molecule

drug discovery that learns an informative and clustered latent space. MoIMIM is trained with Mutual Information Machine (MIM) learning, . . . . .

s it eI st of sl gt S101.5 s S ceemdcede madls e eeSsiutions weh * Integration of MolMIM model into BioNeMo inference service

* "holes" of invalid samples, here we propose a novel extension to the training procedure which promotes a dense latent space, and allows

the model to sample valid molecules from random perturbations of latent codes. We provide a thorough comparison of MolMIM to several
iabl and fixed-size der-decoder models, MolMIM's superior generation as measured in terms of validity,

uniqueness, and novelty. We then utilize CMA-ES, a naive black-box and gradient free search algorithm, over MoIMIM's latent space for the

£ P S propery * Productionize model architecture and training framework
|CLR :TA by more than 5\% . We

, whereas CMA-ES is often
ime, making it an attractive

Accelerated inference

Poster
in o . .
mproving encoder representations

Workshop: Machine Learning for Drug Discovery (MLDD) P g P

Improving Small Molecule Generation using
Mutual Information Machine
Danny Reidenbach - Micha Livne - Rajesh Ilango - Michelle Gill - Johnny
Israeli
[ Abstract ) [ Project Page )
[ BiPoster ] [ & OpenReview )
Fri 5 May 10 am. PDT — 10:55 am. PDT

29 P A



“How | Got Here” and Lessons Learne Alol
the Way "



From Structural Biologist to Data Scientist

Postdoctoral Research: Enzyme Dynamics by .
NMR Spectroscopy AlexNet Won ImageNet Challenge in 2012

RUETEY

L]
. '
: ¢

Pooling 209% 204%

AlexNet didn't just win; it dominated. AlexNet
was unlike the other competitors. This new
model demonstrated unparalleled performance

on the largest image dataset of the time,
ImageNet. This event made AlexNet the first
widely acknowledged, successful application of
deep learning.

Don’t miss the bigger picture: Machine learning will have an impact on every industry.

P A



From Structural Biologist to Data Scientist

AQUrsera
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A Deep Learning Model Became the World’s Best Protein Structure Predictor

Q DeepMind

..MALKIPTHNHM...
..VFRDCEMWS...

~WYIOPMNVGTDEW...

Google DeepMind ~ About  Technologies Impact  Discover

Overview Blog ThePodcast Visualising Al

AlphaFold: a solution to a 50-year-old
grand challenge in biology

CASP15: AlphaFold's success spurs new challenges in ...

Dec 14 — Two years later, AlphaFold still dominates the competition. Deepmind itself did

not participate in this round, but AlphaFold has been open ...

Sequence Structure

every year since

AlphaFold won the Critical Assessment of Protein Structure Prediction (CASP13) Competition in 2018 ... and has done so

33 P A



Al and the Race for a COVID-19 Vaccine

ARTIFICIAL INTELLIGENCE

I Was There When: Al helped create a vaccine

August 26,2022

e Delta e Alpha e lota o Eta
e  Omicron ¢ Gamma © Beta e Lambda

Genome-scale language models (GenSLMs) discover distinct evolutionary patterns in SARS-CoV-2

Q =

Argonne &

Argonne researchers win Gordon Bell Special
Prize for adapting language models to track virus

variants
BY KEVIN JACKSON | NOVEMBER 29, 2022 _
Groundbreaking research focuses on understanding genomic Modia Contacts

sequences to catch more deadly variants of COVID-19. R ——

P A

Zvyagin, M. et al Biorxiv 2022.10.10.511571 (2022) doi:10.1101/2022.10.10.511571.



First Effort: Interface for Clustering and Visualization of Small Molecules
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Deep learning is high risk. Ensure the project will succeed if deep learning fails.

35
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_ ... by the time you’ve read this
?sentence, a new pre-print
revolutionizing the field has been
“posted and these slides are totally

{>o-utdated
O

) /]
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Ingraham, J. et al. llluminating pr otein space \:vith aprog anmable generative model.(2022) d 0i:10.1101/2022.12.01.518682.






Database of
Samples

Developing Deep Learning Models at Scale

Data
Processing

Pre-Training

UniRef50 +
UniRef90

650M

PyFastx

3B

PyTorch

30

7??

ESM-2
NeMo / Megatron

|
M
=
- [
m

Successes from calculated risks provide justification for growing a team.

39



Rapid Team Growth and Adventures in Management

< Two Years

Two Engineers Over Thirty Engineers

Deep learning is hard, but growing and managing a team is the most challenging problem.

40 P A



Conclusions

BioNeMo is a framework and inference service for developing, training, deploying, and
using deep learning models and tools for drug discovery

MolMIM is a cheminformatics language model trained on SMILES with a structured
latent space for molecule design

Careers are long compared to the pace of machine learning advancement

Capitalize on new opportunities and enjoy the ride!

BioNeMo Inference Service early access :
BioNeMo Framework general access coming next week!

I


https://www.nvidia.com/bionemo

Johnny Israeli

Alireza Moradzadeh
Arkadiusz Nowaczynski
Camir Ricketts

Danny Reidenbach
Dejun Lin

Dorota Toczydlowska
Emine Kucukbenli

Eric Dawson

Farhad Ramezanghorbani

The BioNeMo Team

Gagan Kaushik

George Armstrong

Guoging Zhou

Han-Yi Chou

Jasleen Grewal

Kevin Boyd

Maria Korshunova

Mario Geiger

Marta Stepniewska-Dziubinska
Micha Livne

Neha Tadimeti

Ohad Mosafi
Pablo Ribalta
Rajesh Ilango

Sara Rabhi

Simon Chu
Srimukh Veccham
Steven Kothen-Hill
Tomasz Grzegorzek
Timur Rvachov
Yuxing Peng
Zachary McClure

I



Thank You!

Questions:
Fireside Chat
10:15-10:55am
Central Park East

~
¢

michellelynngill.com
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Nine Models in Inference Service for Drug Discovery Applications

Protein Representations

Protein Structure Prediction

Protein Generation

> ;”\
L] e

Amino Acid ESM1nv Protein

Sequence ESM2 Embeddings

AMATACATTC
Q n s

g

ESMFold
Amino Acid OpenfFold Protein
Sequence AlphaFold2 Structure

P> FES

Amino Acid Sequence
Sequence ProtGPT2 Generation

Molecular Representations

Molecular Generation

Molecular Docking

g A

MegaMolBART
SMILES cgavo Embeddings

> >

Molecule Molecule
MoFlow .
SMILES Generation

T @

Docked
Structures

Structures DiffDock

(Q NVIDIA DGX Cloud

<A NVIDIA



Deep Learning at Scale

Pre-Training

Data
Processing

10M

45M

230M

1024

2048

4096

256

512

1024

8

16

[T
(<]
<]
(%]
©

Qo
©

+—
©

[a]

Megatron

Compounds

HEEEN

111108

Ll bl e

B

DrEEE
MEma
EEERMM
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Life Cycle of a BioNeMo Model in the Inference Service

* Model checkpoints are accelerated using a variety of NVIDIA
tools — standard tricks to custom CUDA kernels

* All quantitative and qualitative results are reproduced

* For DiffDock, the RMSD metrics were reproduced under a
variety of different conditions

Reproduction

0.5

0.45

0.4

0.35

0.3

Fraction below 2 Angstroms

0.25

Fraction with RMSD < 2A

L * e 13 Fel M s Le 0 2

m
Mumber of potes

Huba crystal protetsa 1
By’ o NV Trial #1 38.0
Mthiod %<2 Med | %<2 Mol | .
GNINA e 17 | 329 45 NV Trial #2 35.0
SMINA 18T .1 %3 405
GLIDE 21.E b ] .
EguiBiND LL 6.2 NV Tr|a| #3 386
TANKExD 204 440 24.5 14
PIRANKeSMINA 204 69 | 132 .
PIRANK+GNINA  2EE 55 | 383 NV Trial #4 39.1
EquiBNp=SMINA ¢ 232 [i%.]
EQuiBixNosGMINA 2EE 49 .
- : NV Trial #5 38.6
[HFFIFOCE (80}

-

—Top-1 performance
— Top-5 performance

Top-10 performance
- =« Perfect selection

10 20 30 40

Number of generative samples

A NVIDIA I



Proteins Generated from Evozyne's ProT-VAE Models

ProT-VAE: Protein Transformer Variational
AutoEncoder for Functional Protein Design

Emre Sevgen'f, Joshua Moller!'t, Adrian Lange', John
Parker!, Sean Quigley', Jeff Mayer!, Poonam
Srivastava!, Sitaram Gayatri', David Hosfield!, Maria
Korshunova?, Micha Livne?, Michelle Gill?>, Rama

Ranganathan!, Anthony B. Costa?” and Andrew L. Ferguson'”

!Evozyne, Inc., 2430 N Halsted Street, Chicago, 60614, IL, USA.

2NVIDIA, 2788 San Tomas Expressway, Santa Clara, 95051, CA,

USA.

*Corresponding author(s). E-mail(s): acosta@nvidia.com;
andrew.ferguson@evozyne.com;
TThese authors contributed equally to this work.

Unaligned Sequences

QATAERELKFVVA
VFRHGDRTPVVNF
PTDLHKESEWPQG
FGQLTKTGI..

KKFGDNYQLDKVV —

IFSRHNIRSPNIEKT
RDFSPQKWFKWT
AASGELSLR..

Transformer encoder & decoder

Family-specific
encoder & decoder

' |l

Global dimensmnallty reduction
& decoder

167 Mutations
50% Sequence Similarity
1.15x Enhanced Function

QATAERELKFVVA
VFRHGDRTPVVNF
PTDLHKESEWPQG
FGQLTKTGI ..

—> KKFGDNYQLDKVV
IFSRHNIRSPNIEKT
RDFSPQKWFKWT
AASGELSLR..

51 Mutations
85% Sequence Similarity
2.5x Enhanced Function

NVIDIA



Avg. Tanimoto Similarity

Probing Latent Structure by Molecule Interpolation

=
o
1

o
©
1

o
(o)}
1

o
>
1

o
N
1

—e— MolMIM

—e— MolVAE
—o— PerBART

Interpolation Steps

Pairwise interpolations performed at ten evenly spaced steps
for 1,000 ZINC15 molecules

Average Tanimoto similarity to first molecule was calculated
at each step

Molecules sampled from Perceiver BART and MolVAE have
reduced similarity to start and a large degree of variability at

early interpolation steps

Molecules sampled from MolMIM are similar and have the
smallest variance at early steps

50 P A



MolMIM - Performance on Seed Based Molecule Sampling

Randomly sampled ten molecules for each of 20k
molecules from test split

Effective novelty is percentage of molecules that
are valid, unique, not identical to seed, and novel

Sampling radius empirically determined to
maximize effective novelty

CDDD used as baseline model — trained with
molecular property loss

Perceiver BART sampling speed improved relative
to MegaMolBART

MolVAE and MolMIM show significant
improvements in validity and effective novelty

Latent Dim Validity (%)

Effective

Novelty (%) Novelty (%)

Uniqueness (%)

Test Runtime

MegaMoIBART Variable 750 84.8 94.2 51.1 8.7 hours

Perceiver BART 2048 718 94.9 94.6 59.1 38 min

MolVAE 2048 95.7 100.0 98.1 93.9 64 min

MolIMIM 512 98.7 100.0 95.5 94.2 30 min

CDDD 512 845 98.9 99.5 82.2 12 hours'
*CDDD decoding speed limited by batch size.

R. Winter, et. al., Chemical Science. 10, 1692-1701 (2019). s Srmnoia



Single Property Optimization with CMA-ES

0 i . . . . .
— QED (%) el * Performed optimization of QED or penalized logP with query

X 20. 20. .

o= 0d oS08 0= 06 budget of 50,000 oracle calls per input molecule
AtomG2G 736 - -
HeiIrG2G 76.9 . . * Success is % of molecules with QED 2 0.9 or penalized logP
improvement while maintaining Tanimoto similarity & > {0.4, 0.6}

DESMILES 7738 - -
QMo 0S8 771 +5.65 373+2.85 * MolMIM achieves the highest QED and logP success rates
MolGrow ) 834168 4.06 £5.61 * Penalized logP results impacted by known exploit where identical
GraphAF . 8.21+6.51 £4.98 + 6.49 functional groups are repeatedly added
GraphDF - 9.19 +6.43 4.51+5.80
CDGS - 9.56 +6.33 5.10 +5.80
FaST - 1809+8.72 8.98 +6.31
MolMIM 94.6  28.45%54.67 7.60+ 23.62
MolMIM 9.44 + 4,127 4,57 £3.87

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) and S. C.
Hoffman, et al, Nat Mach Intell. 4,21-31 (2022)
QED and logP oracles from Therapeutic Data Commons.

*logP improvement limited to <20 . Ao,



Single Property Optimization with CMA-ES

— QED (%) el * Performed optimization of QED or penalized logP with query
> > .
o= 0d oS08 0= 06 budget of 50,000 oracle calls per input molecule

AtomG2G 736 - -

HeiIrG2G 76.9 . . * Success is % of molecules with QED 2 0.9 or penalized logP
improvement while maintaining Tanimoto similarity & > {0.4, 0.6}

DESMILES 7738 - -

QMo 0S8 771 +5.65 373+2.85 * MolMIM achieves the highest QED and logP success rates

MolGrow ) 834168 4.06 £5.61 * Penalized logP results impacted by known exploit where identical

GraphAF . 8.21+6.51 £4.98 + 6.49 functional groups are repeatedly added

GraphDF i 919£6.43 4.51£5.80 * Recall: MolMIM trained without chemical properties, activity, or

CDGS - 9.56 +6.33 5.10+5.80 fragment knowledge

FaST - 1809872 8.98£6.31

MolMIM 94.6  28.45%54.67 7.60% 23.62

MolMIM 9.44 +4.12" 4,57 +3.87"

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) and S. C.
Hoffman, et al, Nat Mach Intell. 4,21-31 (2022)
QED and logP oracles from Therapeutic Data Commons.

*logP improvement limited to <20 . Ao,



A Clustered Latent Space with Mutual Information Machine

MIM
| e &

- \ > ! > oy
ol W N
% ‘2R .
4 > 2 5

* Same architecture as VAE, but loss maximizes mutual
information and minimizes marginal entropy

* MIM results in an informative and clustered latent space ]

NN )
x ¢ B @@' l@@)@

Lavma() = %(CE (Ms(:2), 40 (2, 2)) ) = —————
+ CE(Mf(x,2), po (x,2)) ) VAE MIM
Hgg () + Hpg (2) = Ingg (2 2)

A

M. Livne, K. Swersky, D. J. Fleet, ArXiv (2019). 54 DA,



Ao QED (%) Penalized logP

5204 5204 5206

JT-VAE 8.8 1.03+1.39 0.28+0.79 L. .

GCPN 9.4 2.49 +1.30 0.79+0.63 gle ProPerty Optlmlzatlon

MolDQN - 3.37£1.62 1.86+1.21

MMPA 329 - -

Vseq2seq 585 3374175 2334117 * Repeated QED and penalized IogF" optimization with query
budget of 50,000 oracle calls per input molecule

VITNN+GAN 60.6 c c

VITAN i 3554167 5334124 * Success is % of molecules with QED > 0.9 or penalized logP
improvement while maintaining Tanimoto similarity & > {0.4, 0.6}

MoFlow - 4.71+4.55 210 +2.86

GA i 5934141 344+ 1,09 * MolMIM achieves the highest QED and logP success rates

AtomG2G 736 - - ¢ Penalized logP results impacted by known exploit where identical

HeirG2G 769 i i functional groups are repeatedly added

DESMILES 718 - - * MolMIM results were repeated with logP improvement limited

amo 238 7.71£5.65 3.73£2.85

MolGrow - 8.34 +6.85 4.06 +5.61

GraphAF - 8.21+6.51 4.98 + 6.49

GraphDF - 9.19 +6.43 4.51+5.80

CDGS - 9.56 +6.33 5.10 +5.80

FasT - 1809+8.72 8.98 +6.31

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T.Jaakkola, ArXiv (2021) and S. C.

MolMIM 94.6  28.45+54.67 7.60+23.62 Hoffman, et al, Nat Mach Intell. 4,21-31 (2022).
*logP improvement limited to <20 °° Smvica.
MolMIM 944 +4.121 4.57 +3.87"



Perspective on BioNeMo

Models have a finite lifespan, the value is in the learnings

Developing and productizing internal research is useful for driving
improvements to the platform

Scalability and acceleration are differentiating factors

Surface NVIDIA technologies, and use bottlenecks to drive the
development software and hardware improvements

NVIDIA
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