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Motivation: Drug Development is a Long and Expensive Process

Original source: Developabi lity assessment as an early de-risking tool for biopharmaceutical development, J. Zurdo, 2013, DO I: 10.4155/pbp.13.3
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Language Models are 
Revolutionizing Discovery

BIOMEDICAL NLP
Learn all of PubMed

PROTEIN STRUCTURE
Predict 3D Structures

GENERATIVE CHEMISTRY
Novel Drug Candidates

Biology Chemistry

Language Imaging

BiologyChemistry

LanguageImaging

• Information from biomedical literature 

• Prediction of chemical reactions

• Biomolecular property prediction

• Structure prediction and docking

VIRTUAL SCREENING
Docking and Pose Prediction



From Sequence to 3D and Back Again

Ferruz, N. et a l.. bioRxiv 2022.08.31.505981 (2022)



Outline

• Overview of BioNeMo: Inference Service and Training Framework

• MolMIM: Development of a Small Molecule Foundation Model for Generation

• Career Progression and Lessons from the Field



BioNeMo Overview: Inference Service and 
Framework



NVIDIA BioNeMo
AI Tools, Frameworks, and Applications for Drug Discovery

MODELS PRE-TRAIN FINE-TUNE DEPLOYTASK MODEL

GENERATEREPRESENT BIND

NVIDIA BIONEMO 
CLOUD SERVICES

PREDICT

NVIDIA BIONEMO 
FRAMEWORK



Multiple Interfaces to a BioNeMo Model in the Inference Service

Interactive UI and Jupyter Workflows API and Python Client
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SARS_CoV_2_MPro

Ensitrelvir_analog



Data
Processing

Distributed
Training

Accelerated
Inference

BioNeMo Framework Overview

• Includes dataset processing, training, fine tuning, and 
example downstream tasks

• Support for multi-GPU and multi-node training

• Data parallelism, and three types of model parallelism

• Currently three LLM models for cheminformatics and 
protein applications –  more models and model types 
coming soon



BioNeMo Framework Technology Stack

• Based on NVIDIA NeMo, which is a library for 
development and training of LLMs

• Automated deployment with Triton is in progress

• Surface and develop new software and hardware 
technology

Surface
NVIDIA

Technology

Develop
NVIDIA

Technology

CUDA

PyTorch/Lightning

NeMo/Apex DGL/PyG/E3NN

BioNeMo Framework

Triton (in progress)

Predictive Models Generative Models

NVIDIA GPUs



MolMIM: Development of a Small Molecule Foundation 
Model for Generation
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Lead Discovery: Three Years for Design-Make-Test-Analyze Cycle

Hit Compound

Known or experimentally 
determined

Weakly active

Target unselective

Toxicity risk

Low metabolic stability

Candidate Drug

Highly potent

Effective for in vivo models

Metabolically stable

No toxicity issues

Multiple of DMTA cycles at 4-6 weeks/cycle 
Transition between multiple labs

Design Make

Analyze Test



Autoencoder Models in a Nutshell

Variational 
Autoencoder (VAE)

Autoencoder

Also works 
with 

sequences --
seq2seq 
models



Cheminformatics Foundation Model Objectives

Representation and Translation

Encoder

Prediction

Molecule

Generation

Encoder

Molecule

Decoder

New Molecule

MLP Encoder

Molecule

Decoder

Reaction

Decoder

New Molecule



SMILES: a Natural Language Representation of Small Molecules
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• MegaMolBART is a sequence-to-sequence developed in 
collaboration with AstraZeneca

• Based on BART NLP model 

• Trained on 1.5B small molecules in SMILES format

• Useful for representation and sequence translation tasks

• Not well suited for generation tasks -- lacks an organized 
and uniformly shaped latent space

MegaMolBART Molecule Representations

Chemformer publication: Irwin, R., et al, Mach. Learn.: Sci. Technol. 3 (2022).



Autoencoder Models in a Nutshell

Variational 
Autoencoder (VAE)

Autoencoder
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Development of MolMIM for Molecule Generation

A. Jaegle, et al., ArXiv (2021). 

Fixed sized and 
organized latent 

space
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• Mutual information machine (MIM) has a loss function that 
maximizes mutual information and minimizes marginal entropy

• MIM loss results in a clustered space while variational 
autoencoder (VAE) loss smooths the latent space resulting in 
blurring

A Clustered Latent Space with Mutual Information Machine 

VAE MIM

M. Livne, K. Swersky, D. J. Fleet, ArXiv (2019).
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MolMIM – Sampling Distance Can Be Tuned for Similarity

Larger Perturbations

Seed
Molecule

Sampled
Molecule

Similarity
Map

Seed
Molecule

Sampled
Molecule

Small Perturbations
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• Hypothesis: having a structured latent space will improve 
performance of property guided optimization

• Chose covariance matrix adaptation (CMA-ES), which is a zeroth 
order optimization method

• CMA-ES is non-parametric and uses only a single scoring function 
per sample

Measuring the Controllability of MolMIM Generation

    N. Hansen, A. Ostermeier, Evol. Comput. 9, 159–195 (2001). 
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• Performed multi-objective optimization to jointly optimize two 
molecule properties (QED, SA) and binding to two protein targets 
(JNK3, GSK4β)

• Novelty is proportion of molecules with similarity metric (0.0 – 1.0) less 
than ≤ 0.4 relative to any other molecule

• Diversity is average similarity across all compounds

• MolMIM is competitive for success and diversity, but novelty has room 
for improvement

Multi-Objective Property Optimization

Model
QED + SA + JNK3 + GSK4β 

Success (%) Novelty (%) Diversity

RationaleRL 74.8 56.1 0.621

MARS 92.3 82.4 0.719

JANUS 100 32.6 0.821

FaST 100 100 0.716

MolMIM (R) 97.5 71.1 0.791

MolMIM (A) 96.6 63.3 0.807

MolMIM (E) 98.3 55.1 0.767

MolMIM (E)† 99.2 54.8 0.772

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) 

QED, SA, JNK3, and GSK4β oracles from Therapeutic Data Commons
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MolMIM: Research to Productization

• Integration of MolMIM model into BioNeMo inference service

• Productionize model architecture and training framework

• Accelerated inference

• Improving encoder representations
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“How I Got Here” and Lessons Learned Along 
the Way
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From Structural Biologist to Data Scientist

Postdoctoral Research: Enzyme Dynamics by 
NMR Spectroscopy AlexNet Won ImageNet Challenge in 2012

Don’t miss the bigger picture: Machine learning will have an impact on every industry.



32 

From Structural Biologist to Data Scientist
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A Deep Learning Model Became the World’s Best Protein Structure Predictor

AlphaFold won the Critical Assessment of Protein Structure Prediction (CASP13) Competition in 2018 … and has done so 
every year since

Sequence Structure
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AI and the Race for a COVID-19 Vaccine 

    Zvyagin, M. et al. Biorxiv 2022.10.10.511571 (2022) doi:10.1101/2022.10.10.511571.
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First Effort: Interface for Clustering and Visualization of Small Molecules

Deep learning is high risk. Ensure the project will succeed if deep learning fails.



… by the time you’ve read this 
sentence, a new pre-print 
revolutionizing the field has been 
posted and these slides are totally 
outdated

PROTEIN
DESIGN



Ingraham, J.  et al . I lluminating pr otein space with  a pro gr ammable generative model . (2022) d oi:10.1101/2022.12.01.518682. 



Ingraham, J.  et al . I lluminating pr otein space with  a pro gr ammable generative model . (2022) d oi:10.1101/2022.12.01.518682. 
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Developing Deep Learning Models at Scale

Data 
Processing

Pre-Training

PyFastx

UniRef50 + 
UniRef90

NeMo / Megatron

ESM-2

Database of 
Samples

PyTorch

Successes from calculated risks provide justification for growing a team.

Model Size 
(Param)

Training Time (Days)

512 x V100s 512 x A100s

650M 8
???

3B 30
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Rapid Team Growth and Adventures in Management 

Deep learning is hard, but growing and managing a team is the most challenging problem.

Two Engineers Over Thirty Engineers

< Two Years
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Conclusions

• BioNeMo is a framework and inference service for developing, training, deploying, and 
using deep learning models and tools for drug discovery

• MolMIM is a cheminformatics language model trained on SMILES with a structured 
latent space for molecule design

• Careers are long compared to the pace of machine learning advancement

• Capitalize on new opportunities and enjoy the ride!

BioNeMo Inference Service early access : https://www.nvidia.com/bionemo
BioNeMo Framework general access coming next week!

https://www.nvidia.com/bionemo
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Thank You!

Questions:

Fireside Chat

10:15 – 10:55am

Central Park East

    mgill@nvidia.com

     michellelynngill.com
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Appendix



Nine Models in Inference Service for Drug Discovery Applications

ProtGPT2

Protein  Generation

Sequence
Generation

Amino Acid
Sequence

Protein
Structure

Amino Acid
Sequence

ESMFold
OpenFold

AlphaFold2

Protein Structure Prediction

ESM1nv
ESM2

Protein Representations

Protein
Embeddings

Amino Acid
Sequence

Docked 
Structures

Structures DiffDock

Molecular Docking

Molecule
Generation

Molecule
SMILES

MoFlow

Molecular Generation

NVIDIA DGX Cloud

Molecule
Embeddings

Molecule
SMILES

MegaMolBART

Molecular Representations
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Deep Learning at Scale

Data 
Processing

Pre-Training

PySMILES

SMILES

Megatron

MegaMolBART

Database of 
1.5B 

Compounds

RDKit PyTorch

Attention 
Heads

Layers Hidden Size
Feed 

Forward
Parameters

8 4 256 1024 10M

8 6 512 2048 45M

16 8 1024 4096 230M



Life Cycle of a BioNeMo Model in the Inference Service

• Model checkpoints are accelerated using a variety of NVIDIA 
tools – standard tricks to custom CUDA kernels

• All quantitative and qualitative results are reproduced 

• For DiffDock, the RMSD metrics were reproduced under a 
variety of different conditions

NV Trial #1 38.0

NV Trial #2 35.0

NV Trial #3 38.6

NV Trial #4 39.1

NV Trial #5 38.6

Reproduction Publication



Proteins Generated from Evozyne's ProT-VAE Models



50 

• Pairwise interpolations performed at ten evenly spaced steps 
for 1,000 ZINC15 molecules

• Average Tanimoto similarity to first molecule was calculated 
at each step

• Molecules sampled from Perceiver BART and MolVAE have 
reduced similarity to start and a large degree of variability at 
early interpolation steps

• Molecules sampled from MolMIM are similar and have the 
smallest variance at early steps

Probing Latent Structure by Molecule Interpolation
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• Randomly sampled ten molecules for each of 20k 
molecules from test split

• Effective novelty is percentage of molecules that 
are valid, unique, not identical to seed, and novel

• Sampling radius empirically determined to 
maximize effective novelty

• CDDD used as baseline model – trained with 
molecular property loss

• Perceiver BART sampling speed improved relative 
to MegaMolBART

• MolVAE and MolMIM show significant 
improvements in validity and effective novelty

MolMIM – Performance on Seed Based Molecule Sampling

Model Latent Dim Validity (%) Uniqueness (%) Novelty (%)
Effective 

Novelty (%)
Test Runtime

MegaMolBART Variable 75.0 84.8 94.2 51.1 8.7 hours

Perceiver BART 2048 71.8 94.9 94.6 59.1 38 min

MolVAE 2048 95.7 100.0 98.1 93.9 64 min

MolMIM 512 98.7 100.0 95.5 94.2 30 min

CDDD 512 84.5 98.9 99.5 82.2 12 hours†

†CDDD decoding speed limited by batch size.

R. Winter, et. al., Chemical Science. 10, 1692–1701 (2019). 
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• Performed optimization of QED or penalized logP with query 
budget of 50,000 oracle calls per input molecule

• Success is % of molecules with QED ≥ 0.9 or penalized logP 
improvement while maintaining Tanimoto similarity δ ≥ {0.4, 0.6}

• MolMIM achieves the highest QED and logP success rates

• Penalized logP results impacted by known exploit where identical 
functional groups are repeatedly added

Single Property Optimization with CMA-ES

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) and  S. C. 
Hoffman, et al, Nat Mach Intell. 4, 21–31 (2022)

QED and logP oracles from Therapeutic Data Commons.
†logP improvement limited to ≤ 20

Model
QED (%) Penalized logP

δ ≥ 0.4 δ ≥ 0.4 δ ≥ 0.6

AtomG2G 73.6 - -

HeirG2G 76.9 - -

DESMILES 77.8 - -

QMO 92.8 7.71 ± 5.65 3.73 ± 2.85

MolGrow - 8.34 ± 6.85 4.06 ± 5.61

GraphAF - 8.21 ± 6.51 4.98 ± 6.49

GraphDF - 9.19 ± 6.43 4.51 ± 5.80

CDGS - 9.56 ± 6.33 5.10 ± 5.80

FaST - 18.09 ± 8.72 8.98 ± 6.31

MolMIM 94.6 28.45 ± 54.67 7.60 ± 23.62

MolMIM 9.44 ± 4.12† 4.57 ± 3.87†



53 

• Performed optimization of QED or penalized logP with query 
budget of 50,000 oracle calls per input molecule

• Success is % of molecules with QED ≥ 0.9 or penalized logP 
improvement while maintaining Tanimoto similarity δ ≥ {0.4, 0.6}

• MolMIM achieves the highest QED and logP success rates

• Penalized logP results impacted by known exploit where identical 
functional groups are repeatedly added

• Recall: MolMIM trained without chemical properties, activity, or 
fragment knowledge

Single Property Optimization with CMA-ES

Model
QED (%) Penalized logP

δ ≥ 0.4 δ ≥ 0.4 δ ≥ 0.6

AtomG2G 73.6 - -

HeirG2G 76.9 - -

DESMILES 77.8 - -

QMO 92.8 7.71 ± 5.65 3.73 ± 2.85

MolGrow - 8.34 ± 6.85 4.06 ± 5.61

GraphAF - 8.21 ± 6.51 4.98 ± 6.49

GraphDF - 9.19 ± 6.43 4.51 ± 5.80

CDGS - 9.56 ± 6.33 5.10 ± 5.80

FaST - 18.09 ± 8.72 8.98 ± 6.31

MolMIM 94.6 28.45 ± 54.67 7.60 ± 23.62

MolMIM 9.44 ± 4.12† 4.57 ± 3.87†

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) and  S. C. 
Hoffman, et al, Nat Mach Intell. 4, 21–31 (2022)

QED and logP oracles from Therapeutic Data Commons.
†logP improvement limited to ≤ 20
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• Same architecture as VAE, but loss maximizes mutual 
information and minimizes marginal entropy

• MIM results in an informative and clustered latent space

A Clustered Latent Space with Mutual Information Machine 

VAE MIM

M. Livne, K. Swersky, D. J. Fleet, ArXiv (2019).
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• Repeated QED and penalized logP optimization with query 
budget of 50,000 oracle calls per input molecule

• Success is % of molecules with QED ≥ 0.9 or penalized logP 
improvement while maintaining Tanimoto similarity δ ≥ {0.4, 0.6}

• MolMIM achieves the highest QED and logP success rates

• Penalized logP results impacted by known exploit where identical 
functional groups are repeatedly added

• MolMIM results were repeated with logP improvement limited

Single Property Optimization

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) and  S. C. 
Hoffman, et al, Nat Mach Intell. 4, 21–31 (2022).

†logP improvement limited to ≤ 20

Model
QED (%) Penalized logP

δ ≥ 0.4 δ ≥ 0.4 δ ≥ 0.6

JT-VAE 8.8 1.03 ± 1.39 0.28 ± 0.79

GCPN 9.4 2.49 ± 1.30 0.79 ± 0.63

MolDQN - 3.37 ± 1.62 1.86 ± 1.21

MMPA 32.9 - -

VSeq2Seq 58.5 3.37 ± 1.75 2.33 ± 1.17

VJTNN+GAN 60.6 - -

VJTNN - 3.55 ± 1.67 2.33 ± 1.24

MoFlow - 4.71 ± 4.55 2.10 ± 2.86

GA - 5.93 ± 1.41 3.44 ± 1.09

AtomG2G 73.6 - -

HeirG2G 76.9 - -

DESMILES 77.8 - -

QMO 92.8 7.71 ± 5.65 3.73 ± 2.85

MolGrow - 8.34 ± 6.85 4.06 ± 5.61

GraphAF - 8.21 ± 6.51 4.98 ± 6.49

GraphDF - 9.19 ± 6.43 4.51 ± 5.80

CDGS - 9.56 ± 6.33 5.10 ± 5.80

FaST - 18.09 ± 8.72 8.98 ± 6.31

MolMIM 94.6 28.45 ± 54.67 7.60 ± 23.62

MolMIM 9.44 ± 4.12† 4.57 ± 3.87†



Perspective on BioNeMo

• Models have a finite lifespan, the value is in the learnings

• Developing and productizing internal research is useful for driving 
improvements to the platform

• Scalability and acceleration are differentiating factors

• Surface NVIDIA technologies, and use bottlenecks to drive the 
development software and hardware improvements
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