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Language Models are
Revolutionizing Discovery £ 5 wm A
Biology ~Chemistry Chemistry  Biology
2 > > > 2
Information from biomedical literature Language  Imaging Imaging  Language
Named entity and relationship extraction Encoder  Latent Space Decoder

Reaction prediction
Reaction and retrosynthesis prediction
Molecular optimization

Property prediction
Sequence level
“Token” level (amino acid, motif, SMILES)

Structure prediction and docking
Secondary structure analysis
Protein representation for model inputs

BIOMEDICAL NLP GENERATIVE PROTEIN STRUCTURE VIRTUAL SCREENING
Learn all of PubMed CHEMISTRY Predict 3D Structures  Docking and Pose Prediction

Novel Drug Candidates
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From Sequence to 3D and Back Again
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Perspective on BioNeMo
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Outline

Overview of BioNeMo: Inference Service and Training Framework

MolMIM: Development of a Small Molecule Foundation Model for Generation

DiffDock Optimization: From Research to Enterprise Quality Software
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* MoIMIM: Development of a Small Molecule Foundation Model for Generation

» DiffDock Optimization: From Research to Enterprise Quality Software
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NVIDIA BioNeMo

Al Tools, Frameworks, and Applications for Drug Discovery

NVIDIA BIONEMO
CLOUD SERVICES
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Nine Models in Inference Service for Drug Discovery Applications

Protein Representations

Protein Structure Prediction Protein Generation
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Amino Acid ESM1nv Protein Amino Acid OpenFold Protein Amino Acid ProtGPT2 Sequence
Sequence ESM2 Embeddings Sequence AlphaFold2 Structure Sequence Generation
Molecular Representations Molecular Generation Molecular Docking
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Molecule Molecule Molecule Molecule

; Docked

SMILES MegaMolBART Embeddings SMILES MoFlow Generation Structures DiffDock Structures

NVIDIA DGX
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Life Cycle of a BioNeMo Model in the Inference Service

* Model checkpoints are accelerated using a variety of
NVIDIA tools - standard tricks to custom CUDA
kernels

« All quantitative and qualitative results are
reproduced

* For DiffDock, the RMSD metrics were reproduced
under a variety of different conditions
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Holo crystal proteins i
. NV Trial #1 |38.0
Method %<2 Med. | %<2 Med. | .
GNINA 29 77 | 329 45 NV Trial #2 |35.0
SMINA 187 71 | 293 46
GLIDE 218 93 .
EQUIBIND 55 62 NV TrlaI #3 |38.6
TANKBIND 204 40 | 245 34
P2RANK+SMINA 204 69 | 332 44 .
PIRANK+GNINA 288 S5 | 383 o NV Trial #4 |39.1
EQUIBIND+SMINA 232 65 | 38.6” 34
EQUIBIND+GNINA 288 49 1 31 -
7 07 265 NV Trial #5 |38.6
DIFFDOCK (40) 38.2 .3 4.7 240
Publication

—Top-1 performance

— Top-5 performance

Top-10 performance

- - Perfect selection
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Life Cycle of a BioNeMo Model in the Inference Service

* APl and Python interface
developed

* Interactive Ul and example
Jupyter notebooks

import requests

from bionemo.api import BionemoClient

Mot © o @
Apharole2

Soecta Examie U0 ©

UniProt 10: 014763

PrtinSoqence © o0 s
MEQRGONAPAASGARKRHGPGPREARGAR
POPRVPKTLVLVVAAVLLIVSAESALITOODL.
APOQRAAPOQKASSPSEGLOPPGHHISEDGR
DCISCKYGQOVSTHWNDLLCLRCTRCDSGE
VELSPCTTTRNTVCQCEEGTFREEDSPENICR
KCRIGCPRGMVKVGDCTPWSDIECVHKESG
TKHSGEVPAVEETVTSSPGTPASPCSLSGING
VTVARWLVAVRVCKSLLAKKVLPYLKGICS
‘CGGGOPERVDRSSGRPOAEDNVLNEIVSILG

PTQVPEQEMEVQEPAEPTGVNML

* c task-fitting-predictor.ipynb X (% virtual-screening-pipeline.i X
8 + X O [ » m C » Code v B
Q
ooks-dev / python-client / % X ) i
R Last Modihed End-to-End Virtual Screening Pi
5 days ago This example notebook shows how to connect BioNe|
s 6 days ago infuse our workflow with Al at every step, from ligand
n-generation-a 4 days ago enabled by NVIDIA's BioNeMo framework for Large L
In-generation-p. 4 days ago NVIDIA BioNeMo Service homepage at https://www.r
tting-predictor. 2 hours ago

ngc_token="<<NGC TOKEN: . _
= N e
B iy PR . e BionemoClient()
6 try
response

requests.post("http api.stg.bionemo.ng dia. cor prote 1 proteins = ngth=
equence/protgpt2/generate -

8 headers-headers .

) json _protein = proteins|
10 ‘max_length":150

Playground

Let's break down the key steps of a virtual screening|
enabled in BioNeMo.
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2 NVIDIA. NGC|BioNeMo Service

BioNeMo Service

Welcome to BioNemo!

Get started with a model below. Explore documentation for more information.

H Secondary Action + Primary Action

Get Started with BioNemo

Protein Generation / Protein Embedding Molecule Generation
These models generate proteins with a sequence distribution that These models generate protein embeddings. They take an amino Given a seed molecule, these models can generate similar molecules
& mirrors the distribution of proteins on which the model was trained & acid sequence and returns a learned representation, &

MegaMolBART

Molecule Embedding Protein Folding Docking
These models generate embeddings for a given molecule. These models predict the 3D structure of a protein from only the These models take a molecule structure and a protein structure and

MegaMolBART ‘ ESMFold ‘ ‘ OpenFold ‘ ‘ AlphaFold-2 ‘

Documentation

£ Generate API Ke! [£] Documentation
d Y ‘ E Learn more about using NeMo LLM and dive deep with tutorials, how-to guides et :

and examples.

Generate an API Key
Authenticate your identity while making queries to NeMo LLM via the REST
APIL.

L
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BioNeMo Service

5.2t P|aygl’0und E Documentation  © Learn More

Protein Embedding Molecule NV ile Embedding Protein Folding

Choose a model to generate sequence output. If you have a Compound CID, input it below or you can start with one of our provided example use cases.
Model Output

OpenFold . Sequence of 7WZF |Struc.. ¢ Chain <  1:YunM @ @ Structure

S POBiD M»\SDGK»\JSFLGKHALKMFBLKANBFLKGANDFLKGAJAHSGUFJSAGFHJDJHSHJDHJJHJHJJHJJJJJHGAHSDGHGSHDGJHFGASJHUGFJAKHSGFJHJHAGSJHSUASJLDHALSJNJAHAH 7WZF | Structural and mechanism a
nter a 1

51 16 81 19 01
ASKDJGAKSN\IKASJDFIWAUSNRIAVNRVAKJRNAEURNANDSNALSKDNGALSNFVADJFNVAFVARNVARNAVLKNFVALDFN\/AKLDNFGLAKSDFNGLAKNUVERBVADVFBAHJHHJHJHSDFH Type Assembly
31 24
HASDGKAJSFLGKHRLKMFELKANDFLKGAHDFLKGAJAHSGDFJSAG
Asm ID 1: Author Defined Asse...
Or

Select an Example PDB ID Dynamic Bonds X Off

Input & Measurements
MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLT

& ( 2 Q_ Structure Motif Search
KSPSLNAAAKSELDKAIGRNTNGVITKDEAEK \
LFNQDVDAAVRGILRNAKLKPVYDSLDAVRR
AALINMVFQMGETGVAGFTNSLRMLQQKRW 2 ==
\ \ [] Preset + Add
DEAAVNLAKSRWYNQTPNRAK...

@ Components

Asm ID Cartoon

Ligand Ball & Stick
MSA Options

Water Ball & Stick
No MSA will be generated. We recommend uploading

an MSA for better results. Unit Cell P6322

Density

Quality Assessment

Assembly Symmetry

Export Models

Export Animation

Export Geometry

Clear Generate Outputs displayed here are not saved. Download the output if you would like to keep it. Learn more. ) Give Feedback /> View Code ‘ l [2 Expand ‘
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BioNeMo Service

NGC | BioNeMo LLM Service

n Embedding Molecule G ation Molecule Embedding  Protein Folding king

Choose a model to generate sequence output. If you have a PDB ID, input it below or you can start with one of our provided example use cases.

Model ©® Output @

OpenFold

View Code

Enter a UniProt ID ©®

Or
Select an Example UniProt ID @

Protein Sequence @

Perform MD Refinement

@

Upload an MSA hoose no MSA. One will be auto-generated Learn how to Integrate the API |n10 your appllcatlon
if you take n 3 Click to generate a new API key.
Choose MSA Option

El Documentation

© Learn More
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Playground

BIONEMO STUDIO EA

Model @
MoFlow

Select an Example CID @

Examples
Dicloxacillin
sMILEs ® 73 of 510 chars
Cclonc(-

c2¢(Cl)ccec2Cl)c1C(=0)N[C@@H]1C(=0)N2[C
@@H]1SC(C)(C)[C@@H]2C(=0)0

Number of Molecules @

20

Sample Temperature 0]

0.20 0.35

Clear

Collapse

output ®

0.84

0.79

Choose a model to generate molecules. If you have a Chemical CID, input it below or you can start with one of our provided example use cases.

0.72

0.70

5 Give Feedback

0.69

1.00

0.80

JLIE|IWIS OlowIue]
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BIONEMO £

Collapse

Playground

Choose a model to generate docking poses.

Model @
DiffDock

Molecule ®

D Ensitrelvir_analog

Target Protein ®
B SARS_CoV_2_MPro

Generated Poses (D

Diffusion Steps D

Diffusion Time Divisions @

Clear

20

20

Provide a molecule and a target protein file.

output ®

5 Give Feedback

[ Documentation

3> Center Pose ¥) Reset View

View All Poses < >

Rank: 1 Score:
-0.567

Rank: 2 Score:
-0.769

Rank: 3 Score:
-0.789

Rank: 4 Score:
-1.155

Rank: 5 Score:
-1.254

Rank: 6 Score:
-1.621

Rank: 7 Score:
-1.655

Rank: 8 Score:
-2.039

Rank: 9 Score:
2.144

Rank: 10 Score:
-2.184

Rank: 11 Score:
-2.372

Rank: 12 Score:
-2.576

Rank: 13 Score:




BioNeMo Framework Overview

Includes dataset process, model pre-training
optional fine tuning, and example downstream

J

It

>

tasks

gRPC based class for inference and example
notebook - automated deployment coming

Currently: three LLM models for
cheminformatics and protein applications
(MegaMoIBART, ESM1, ProtT5)

Additional models in development
LLM: ESM-2, nucleic acid models, MoIMIM
Equivariant: EquiDock, OpenFold, DiffDock

NVIDIA.



BioNeMo Framework Technology Stack

Predictive Generative
Models Models

DGL/PyG/E3NN/
cuGraph
PyTorch/PTL

NVIDIA GPUs

* Based on NVIDIA NeMo, which is a library for
development and training of LLMs (as well as

text-to-speech, etc.)
* Provides support for multi-GPU and multi-node
training
+ Data parallelism supported

* Model parallelism supported for all LLMs:
tensor parallelism, pipeline parallelism, and

sequence parallelism

* Automated deployment with Triton is
coming

<ANVIDIA. I



BioNeMo Framework Technology Stack

Sredfictive EEREr . * Based on NVIDIA NeMo, which is a library for
Models Models development and training of LLMs (as well as
text-to-speech, etc.)

* Provides support for multi-GPU and multi-node

training
Surf, N .
NVIDIA NVIDIA + Data parallelism supported
Technol .
Technology - DGL({E%%E?]NN/ Bennele®Y« Model parallelism supported for all LLMs:
tensor parallelism, pipeline parallelism, and
PyTorch/PTL sequence parallelism

* Automated deployment with Triton is
coming

NVIDIA GPUs

» Surface and develop new software and
hardware technology

<ANVIDIA. I



Proteins Generated from Evozyne's ProT-VAE Models

ProT-VAE: Protein Transformer Variational
AutoEncoder for Functional Protein Design

Emre Sevgen'f, Joshua Moller'f, Adrian Lange!, John
Parker!, Sean Quigley!, Jeff Mayer!, Poonam
Srivastava!, Sitaram Gayatri', David Hosfield!, Maria
Korshunova?, Micha Livne?, Michelle Gill?, Rama

Ranganathan'!, Anthony B. Costa®” and Andrew L. Ferguson

1Evozyne, Inc., 2430 N Halsted Street, Chicago, 60614, IL, USA.

2NVIDIA, 2788 San Tomas Expressway, Santa Clara, 95051, CA,

USA.

*Corresponding author(s). E-mail(s): acosta@nvidia.com;
andrew.ferguson@evozyne.com;
TThese authors contributed equally to this work.

Transformer encoder & decoder

Unaligned Sequences

QATAERELKFVVA
VFRHGDRTPVVNF
PTDLHKESEWPQG
FGQLTKTGI...

KKFGDNYQLDKVV
IFSRHNIRSPNIEKT
RDFSPQKWFKWT
AASGELSLR..

Family-specific
encoder & decoder

Global dlmenslonality reduction
& decoder

167 Mutations
50% Sequence Similarity
1.15x Enhanced Function

QATAERELKFVVA
VFRHGDRTPVVNF
PTDLHKESEWPQG
FGQLTKTGI...
— KKFGDNYQLDKVV
IFSRHNIRSPNIEKT
RDFSPQKWFKWT
AASGELSLR..

51 Mutations
85% Sequence Similarity
2.5x Enhanced Function

NVIDIA.



MolMIM: Development of a Sm;y MoI;cuIe

Foundation Model for Generay, / -



Cheminformatics Foundation Model Objectives

Representation and Translation Generation

New Molecule

Encoder Decoder Encoder v Decoder

Encoder

Molecule Molecule

Molecule

New Molecule

Decoder

<ANVIDIA. I



MegaMoIBART Molecule Representations

MegaMolIBART developed in collaboration with
AstraZeneca, based on published model called
Chemformer

BART model - encoder trained with MLM and

autoregressive decoder on 1.5B molecules from

ZINC15

Useful for small molecule representations and
sequence translation tasks

Challenges with using MegaMoIBART for
molecule generation:

Size of encoder output is variable -- based on
number of tokens

Lacks an organized, smooth latent space

Encoder
Nx

Positional
Encoding

Tokenized

SMILES

Chemformer publication: Irwin, R,, et al, 2022 Mach. Learn.: Sci. Technol. 3 (2022).

NVIDIA Library

Aspirin
OE;Y
€C(=0)0clccceclC(=0)0

Feed
Forward

Multi-Head
Attention

CC(=0)0clcccecclC(=0)0

A
Feed
Forward

d

A

Multi-Head
Attention

Masked
Multi-Head
Attention

| S — | —
Encoder Decoder
Embedding Embedding

CC(=0)0clccccclC(=000 (CC(=0)0clccccclC(=0)0

Predicted
SMILES

Decoder
Nx

Positional
Encoding

Tokenized
SMILES

NVIDIA.



Development of a Seq2Seq Model with Fixed Size Latent Dimension

]

Latent Array
(k x D)

)

! (xLv)

k = Perceiver dimension

Tokenized
Molecule
(SxD)

[

Weights optionally shared between repeats

ransformer

(Y
Hr

[
Ty
E
O

St
W
C
®
¥

b

Perceiver encoder utilizes cross-attention
to create a fixed size latent space

Perceiver model has a fixed size
representation (k)

Runtime complexity for the perceiver is
O(Sk + k2), compared to O(S2) for the
transformer

Perceiver BART was trained on 750M
molecules from ZINC15

A. Jaegle, et al,, Arxiv (2021).

<ANVIDIA.



A Clustered Latent Space with Mutual Information Machine

Mutual information machine (MIM) has a loss function
that maximizes mutual information and minimizes
marginal entropy

Utilizes same architecture as VAE

MIM loss results in a clustered space while KL divergence
loss smooths the latent space resulting in blurring

Important: MIM makes no guarantees about cluster
organization

Developed a MolVAE and MolMIM model and trained both
on 750M molecules from ZINC15

MIM

M. Livne, K. Swersky, D. J. Fleet, ArXiv (2019).

27
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MolIMIM - Performance on Seed Based Molecule Sampling

Randomly sampled ten molecules for each of

] Latent AT (B o 5 o Effective s
20k molecules from test split Dim  Validity (%) Uniqueness (%) Novelty (%) Novelty (%) Test Runtime
Effective novelty is percentage of molecules MegaMolBART Variable 75.0 84.8 94.2 51.1 8.7 hours
that are valid, unique, not identical to seed,
and novel Perceiver BART 2048 718 94.9 94.6 59.1 38 min
Sampling radius empirically determined to MolVAE 2048 95.7 100.0 98.1 93.9 64 min
maximize effective novelty

MolMIM 512 98.7 100.0 955 94.2 30 min
CDDD used as baseline model - trained with
molecular property loss CDDD 512 845 98.9 995 822  12hours'

Perceiver BART sampling speed improved
relative to MegaMoIBART

MolVAE and MolMIM show significant
improvements in validity and effective
novelty

fCDDD decoding speed limited by batch size.
R. Winter, et. al., Chemical Science. 10, 1692-1701 (2019). 23  <Invibia.



MolIMIM - Sampling Distance Can Be Tuned for Similarity

o e

Seed Sampled
Molecule Molecule

Larger Perturbations

Seed Sampled Similarity
Molecule Molecule Map

29 <ANVIDIA.



Avg. Tanimoto Similarity

Probing Latent Structure by Molecule Interpolation

=
o
1

o
©
1

o
o
1

©
>
1

o
[N
1

—e— MolMIM

—e— MolVAE
PerBART

Interpolation Steps

Pairwise interpolations performed at ten evenly
spaced steps for 1,000 ZINC15 molecules

Average Tanimoto similarity to first molecule was
calculated at each step

Molecules sampled from Perceiver BART and
MoIVAE have reduced similarity to start and a large
degree of variability at early interpolation steps

Molecules sampled from MolMIM are similar and
have the smallest variance at early steps

30 NVIDIA.



Measuring the Controllability of MolIMIM

Generation 1 Generation 2 Generation 3

* Hypothesis: having a structured latent space will improve
performance of property guided optimization

+ Chose covariance matrix adaptation (CMA-ES), which is a
zeroth order optimization method

* CMA-ES is non-parametric and uses only a single scoring Generation 4 Generation 5 Generation 6
function per sample

N. Hansen, A. Ostermeier, Evol. Comput. 9, 159-195 (2001). 31 <AnVIDIA.



Single Property Optimization with CMA-ES

QED (%) Penalized logP

6=04 5§=>04 6=0.6
AtomG2G 73.6 - -
HeirG2G 76.9 = =
DESMILES 778 - -
QMO 92.8 7.71 £5.65 3.73+285
MolGrow - 8.34 £ 6.85 4.06 £ 5.61
GraphAF = 8.21 £ 6.51 498 + 6.49
GraphDF - 9.19+£6.43 451 +5.80
CDGS - 9.56 + 6.33 5.10 + 5.80
FaST - 1809 +872 8.98 £ 6.31
MolMIM 94.6 28.45 * 54.67 7.60 £ 23.62
MolMIM 944 + 412t 457 + 3.87t

+ Performed optimization of QED or penalized logP with
query budget of 50,000 oracle calls per input molecule

* Success is % of molecules with QED > 0.9 or penalized
logP improvement while maintaining Tanimoto similarity
6 >{0.4,0.6}

* MolMIM achieves the highest QED and logP success
rates

+ Penalized logP results impacted by known exploit where
identical functional groups are repeatedly added

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021)
and S. C. Hoffman, et al, Nat Mach Intell. 4, 21-31 (2022)
QED and logP oracles from Therapeutic Data Commons.

flogP improvement limited to < 20 .

<ANVIDIA.



Single Property Optimization with CMA-ES

Model QED (%) Penalized logP
6=04 5§=>04 6=0.6

AtomG2G 73.6 - -
HeirG2G 76.9 = =
DESMILES 778 - -
QMO 92.8 7.71 +5.65 3.73+285
MolGrow - 8.34 £ 6.85 4.06 £ 5.61
GraphAF = 8.21 £6.51 498 + 6.49
GraphDF - 9.19+£6.43 451 +£580
CDGS - 9.56 + 6.33 5.10 + 5.80
FasT - 18.09+872 8.98 + 6.31
MolMIM 94.6 28.45 * 54.67 7.60 £ 23.62
MolMIM 944 + 412t 457 + 3.87t

Performed optimization of QED or penalized logP with
query budget of 50,000 oracle calls per input molecule

Success is % of molecules with QED > 0.9 or penalized
logP improvement while maintaining Tanimoto similarity
6 >{0.4,0.6}

MolIMIM achieves the highest QED and logP success
rates

Penalized logP results impacted by known exploit where
identical functional groups are repeatedly added

Recall: MoIMIM trained without chemical properties,
activity, or fragment knowledge

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021)

and S. C. Hoffman, et al, Nat Mach Intell. 4, 21-31 (2022)
QED and logP oracles from Therapeutic Data Commons.
flogP improvement limited to < 20

<ANVIDIA.



Multi-Objective Property Optimization

_ QED + SA + JNK3 + GSK4B
* Performed multi-objective molecule optimization to jointly S8 Success (%) Novelty (%)  Diversity
optimize QED = 0.6, SA < 4.0, JNK3 = 0.5, GSK4B = 0.5 RationaleRL 748 56 1 0621
* Novelty is proportion of molecules with 6 < 0.4 relative to any MARS 923 82.4 0.719
molecule in active set
JANUS 100 326 0.821
 Diversity is the mean pairwise Tanimoto similarity across all FaST 100 100 0716
compounds
MoIMIM (R) 975 71.1 0.791
MoIMIM (A) 96.6 63.3 0.807
MoIMIM (E) 983 55.1 0.767
MolMIM (E)t 99.2 54.8 0.772

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021)
QED, SA, JNK3, and GSK4pB oracles from Therapeutic Data Commons

34
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Multi-Objective Property Optimization

_ QED + SA + JNK3 + GSK48
Performed multi-objective molecule optimization to jointly S8 Success (%) Novelty (%)  Diversity
optimize QED > 0.6, SA < 4.0, JNK3 > 0.5, GSK4B = 0.5 RationaleRL 748 56 1 0621
Novelty is proportion of molecules with 6 < 0.4 relative to any MARS 923 82.4 0.719
molecule in active set
JANUS 100 326 0.821
Diversity is the mean pairwise Tanimoto similarity across all FaST 100 100 0716
compounds
MoIMIM (R) 975 71.1 0.791
Optimization types: MoIMIM (A) 96.6 63.3 0.807
= Random: 2,000 ZINC15 test set molecules
= Approximate: 551 molecules that satisfy QED € [0.25, 0.4]; MolMIM (E) 98.3 55.1 0.767
JNK3 and GSK4p € [0.25, 0.35] T (5 99.2 548 0772

= Exemplar: 741 molecules that satisfy success criteria

= tWith Tanimoto similarity > 0.4

MolIMIM is competitive for success and diversity, but novelty

has room for improvement

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021)
QED, SA, JNK3, and GSK4pB oracles from Therapeutic Data Commons
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MolMIM: Research to Productization

ar V > cs > arXiv:2208.09016 Help | Advancec

Computer Science > Machine Learning

[submitted on 18 Aug 2022 (v1), last revised 29 Mar 2023 (this version, v2)]

Improving Small Molecule Generation using Mutual Information Machine
Danny Reidenbach, Micha Livne, Rajesh K. llango, Michelle Gill, Johnny Israeli

We address the task of controlled generation of small molecules, which entails finding novel molecules with desired properties under
certain constraints (e.g., similarity to a reference molecule). Here we introduce MolMIM, a probabilistic auto-encoder for small molecule
drug discovery that learns an informative and clustered latent space. MoIMIM is trained with Mutual Information Machine (MIM) learning,
and provides a fixed length representation of variable length SMILES strings. Since encoder-decoder models can learn representations with
**holes" of invalid samples, here we propose a novel extension to the training procedure which promotes a dense latent space, and allows
the model to sample valid molecules from random perturbations of latent codes. We provide a thorough comparison of MoIMIM to several
variable-size and fixed-size encoder-decoder models, demonstrating MoIMIM's superior generation as measured in terms of validity,
uniqueness, and novelty. We then utilize CMA-ES, a naive black-box and gradient free search algorithm, over MolMIM's latent space for the
. . o e . ) !

TA by more than 5\% . We
M ICLR = wrerea cuaces s ofen

ime, making it an attractive

Poster
in
Workshop: Machine Learning for Drug Discovery (MLDD)

Improving Small Molecule Generation using
Mutual Information Machine
Danny Reidenbach - Micha Livne - Rajesh Ilango - Michelle Gill - Johnny
Israeli

[ Abstract ] ( Project Page )
( ByPoster ] [ & OpenReview )
Fri 5 May 10 a.m. PDT — 10:55 a.m. PDT

Integration of MoIMIM model into BioNeMo inference
service

Productionize model architecture and training framework
Accelerated inference
Improving encoder representations

Wishlist: more relevant and comprehensive benchmarks -
want to collaborate?
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DiffDock Optimization: From Re
to Enterprise Quality Softwarg)e




DiffDock for Diffusion-Based Docking Pose Generation

i ranked poses &

ligand & DIFFDoOCK > i

protein confidence score
reverse diffusion over

i e = translations, rotations and torsions t=0 @
|
O\N/N\

Y

IMAGE: https://github.com/gcorso/DiffDock
G. Corso, H. Stark, B. Jing, R. Barzilay, T. Jaakkola, Arxiv (2022). < nvibia I



Process time (s)

GPU Specific Optimization of DiffDock with TF32

Sigjl - RBEE Precisi\on

ez | sums (NGRS + Reducing numerical precision is a common method of

- accelerating both training and inference, e.g. FP32 >

TENSOR FLOAT 32 (TF32) _ FP16
——
o6 _ * However lower precision formats are more susceptible
to overflows and can lead to numerical instabilities
BFLOAT16
I coms BN

* NVIDIA A100 GPUs support a math mode called
e P ey TensorFloat32 (TF32), which strikes a balance between
7 — 363 complexes, 40 poses, TF32 precision and performance

150 4

+ Converting DiffDock weights to TF32 required changing
1257 one line of code and provided 1.8x speed up of inference,

100 | with no impact on benchmarked accuracy

754

| ‘ ll  Similar optimizations are being tested with model
‘ training

o hi A St R i
il (T ’;ll »“l”, \ ,,' J‘ln M
U TP R TR AR J \

0 50 100 150 200 250 300 350
Complex index

50 A

25 A

TF32 format: https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/ 39

<ANVIDIA.



Optimization of DiffDock Mathematical Operations

DiffDock is an equivariant model, data are represented in
spherical basis

h, < h,
One forward pass requires many multiplications involving
irreducible representations of a given symmetry group,
e.g. rigid rotations in 3D
The tensor product operations are from the e3nn library
and comprise a considerable part of computation time - Processes )
(see profile, green circle) ~ Eotlppmon

~ CUDA HW (0000:07:00.0 - NVIC
> 97.5% Kernels

BioNeMo includes a version of e3nn which has been
accelerated with CUDA parallelism

> 2.5% Memory

NVTX e
Profiling reveals other opportunities - data operations
and other methods to maximize GPU use

torch_automated_profiler ™

170 ms

1

270 ms =

T —————w"n T ——————————————————m o

- Ll 1l
ONE0E) 10610 I IE Olc=
OIE RGN OlE eI Ol

TensorProductScoreModel | FW [] 1 [TensorProdudS(oreMcdel | F] [TensorProd
0 & 0 0l
™ [ [ o= Ay A MY W= S -

[(
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« Drive research and development of accelerate compute

DiffDock: Research to Productization

« MD-assisted refinement of docked poses i

s e e

- Dataset extension and management

&

functionality for equivariant models PR
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Conclusion




Conclusions

BioNeMo is a framework and inference service for developing, training,
deploying, and using deep learning models and tools for drug discovery

BioNeMo surfaces NVIDIA hardware and software improvements relevant to
life sciences and drives future development

MolMIM is a cheminformatics model trained on only SMILES with a
structured latent space and fixed size embedding for molecule design

DiffDock acceleration and improvements in numerical stability drive future
equivariant model optimizations

BioNeMo framework open beta coming soon, enroll in service GA here:

NVIDIA.


https://www.nvidia.com/bionemo/
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