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Language Models are 
Revolutionizing Discovery

BIOMEDICAL NLP
Learn all of PubMed

PROTEIN STRUCTURE
Predict 3D Structures

GENERATIVE 
CHEMISTRY

Novel Drug Candidates

Biology Chemistry

Language Imaging

BiologyChemistry

LanguageImaging

Encoder Latent Space Decoder

• Information from biomedical literature 
• Named entity and relationship extraction

• Reaction prediction
• Reaction and retrosynthesis prediction 
• Molecular optimization

• Property prediction
• Sequence level 

• “Token” level (amino acid, motif, SMILES)

• Structure prediction and docking
• Secondary structure analysis
• Protein representation for model inputs

VIRTUAL SCREENING
Docking and Pose Prediction
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Perspective on BioNeMo

• Models have a finite lifespan, the value is in the learnings

• Developing and productizing internal research is useful for 
driving improvements to the platform

• Scalability and acceleration are differentiating factors

• Surface NVIDIA technologies, and use bottlenecks to drive the 
development software and hardware improvements
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• DiffDock Optimization: From Research to Enterprise Quality Software
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BioNeMo Overview: Inference 
Service and Framework



NVIDIA BioNeMo
AI Tools, Frameworks, and Applications for Drug Discovery

MODELS PRE-TRAIN FINE-TUNE DEPLOYTASK MODEL

GENERATE REPRESENT BIND

NVIDIA BIONEMO 
CLOUD SERVICES

PREDICT

NVIDIA BIONEMO 
FRAMEWORK



Nine Models in Inference Service for Drug Discovery Applications
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Life Cycle of a BioNeMo Model in the Inference Service

• Model checkpoints are accelerated using a variety of 
NVIDIA tools – standard tricks to custom CUDA 
kernels

• All quantitative and qualitative results are 
reproduced 

• For DiffDock, the RMSD metrics were reproduced 
under a variety of different conditions

NV Trial #1 38.0

NV Trial #2 35.0

NV Trial #3 38.6

NV Trial #4 39.1

NV Trial #5 38.6

Reproduction Publication



Life Cycle of a BioNeMo Model in the Inference Service

• API and Python interface 
developed

• Interactive UI and example 
Jupyter notebooks
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Ensitrelvir_analog



Data
Processing

Distributed
Training

Accelerated
Inference

BioNeMo Framework Overview

• Includes dataset process, model pre-training 
optional fine tuning, and example downstream 
tasks

• gRPC based class for inference and example 
notebook – automated deployment coming

• Currently: three LLM models for 
cheminformatics and protein applications 
(MegaMolBART, ESM1, ProtT5)

• Additional models in development
• LLM: ESM-2, nucleic acid models, MolMIM
• Equivariant: EquiDock, OpenFold, DiffDock



BioNeMo Framework Technology Stack

• Based on NVIDIA NeMo, which is a library for 
development and training of LLMs (as well as 
text-to-speech, etc.)
• Provides support for multi-GPU and multi-node 

training
• Data parallelism supported
• Model parallelism supported for all LLMs: 

tensor parallelism, pipeline parallelism, and 
sequence parallelism

• Automated deployment with Triton is 
coming

CUDA

PyTorch/PTL

NeMo/Apex DGL/PyG/E3NN/
cuGraph

BioNeMo Framework

Triton

Predictive 
Models

Generative 
Models

NVIDIA GPUs



BioNeMo Framework Technology Stack

• Based on NVIDIA NeMo, which is a library for 
development and training of LLMs (as well as 
text-to-speech, etc.)
• Provides support for multi-GPU and multi-node 

training
• Data parallelism supported
• Model parallelism supported for all LLMs: 

tensor parallelism, pipeline parallelism, and 
sequence parallelism

• Automated deployment with Triton is 
coming

• Surface and develop new software and 
hardware technology
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Proteins Generated from Evozyne's ProT-VAE Models



MolMIM: Development of a Small Molecule 
Foundation Model for Generation



Cheminformatics Foundation Model Objectives
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• MegaMolBART developed in collaboration with 
AstraZeneca, based on published model called 
Chemformer

• BART model – encoder trained with MLM and 
autoregressive decoder on 1.5B molecules from 
ZINC15

• Useful for small molecule representations and 
sequence translation tasks

• Challenges with using MegaMolBART for 
molecule generation:

• Size of encoder output is variable -- based on 
number of tokens

• Lacks an organized, smooth latent space

MegaMolBART Molecule Representations

Chemformer publication: Irwin, R., et al, 2022 Mach. Learn.: Sci. Technol. 3 (2022).
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• Perceiver encoder utilizes cross-attention 
to create a fixed size latent space

• Perceiver model has a fixed size 
representation (k)

• Runtime complexity for the perceiver is 
O(Sk + k2), compared to O(S2) for the 
transformer

• Perceiver BART was trained on 750M 
molecules from ZINC15

Development of a Seq2Seq Model with Fixed Size Latent Dimension

k = Perceiver dimension

A. Jaegle, et al., Arxiv (2021). 
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• Mutual information machine (MIM) has a loss function 
that maximizes mutual information and minimizes 
marginal entropy

• Utilizes same architecture as VAE

• MIM loss results in a clustered space while KL divergence 
loss smooths the latent space resulting in blurring

• Important: MIM makes no guarantees about cluster 
organization

• Developed a MolVAE and MolMIM model and trained both 
on 750M molecules from ZINC15

A Clustered Latent Space with Mutual Information Machine 

VAE

MIM

M. Livne, K. Swersky, D. J. Fleet, ArXiv (2019).
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• Randomly sampled ten molecules for each of 
20k molecules from test split

• Effective novelty is percentage of molecules 
that are valid, unique, not identical to seed, 
and novel

• Sampling radius empirically determined to 
maximize effective novelty

• CDDD used as baseline model – trained with 
molecular property loss

• Perceiver BART sampling speed improved 
relative to MegaMolBART

• MolVAE and MolMIM show significant 
improvements in validity and effective 
novelty

MolMIM – Performance on Seed Based Molecule Sampling

Model Latent 
Dim

Validity (%) Uniqueness (%) Novelty (%) Effective 
Novelty (%)

Test Runtime

MegaMolBART Variable 75.0 84.8 94.2 51.1 8.7 hours

Perceiver BART 2048 71.8 94.9 94.6 59.1 38 min

MolVAE 2048 95.7 100.0 98.1 93.9 64 min

MolMIM 512 98.7 100.0 95.5 94.2 30 min

CDDD 512 84.5 98.9 99.5 82.2 12 hours†

†CDDD decoding speed limited by batch size.

R. Winter, et. al., Chemical Science. 10, 1692–1701 (2019). 
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MolMIM – Sampling Distance Can Be Tuned for Similarity

Small Perturbations Larger Perturbations

Seed
Molecule

Sampled
Molecule

Similarity
Map

Seed
Molecule

Sampled
Molecule



30 

• Pairwise interpolations performed at ten evenly 
spaced steps for 1,000 ZINC15 molecules

• Average Tanimoto similarity to first molecule was 
calculated at each step

• Molecules sampled from Perceiver BART and 
MolVAE have reduced similarity to start and a large 
degree of variability at early interpolation steps

• Molecules sampled from MolMIM are similar and 
have the smallest variance at early steps

Probing Latent Structure by Molecule Interpolation
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• Hypothesis: having a structured latent space will improve 
performance of property guided optimization

• Chose covariance matrix adaptation (CMA-ES), which is a 
zeroth order optimization method

• CMA-ES is non-parametric and uses only a single scoring 
function per sample

Measuring the Controllability of MolMIM

    N. Hansen, A. Ostermeier, Evol. Comput. 9, 159–195 (2001). 
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• Performed optimization of QED or penalized logP with 
query budget of 50,000 oracle calls per input molecule

• Success is % of molecules with QED ≥ 0.9 or penalized 
logP improvement while maintaining Tanimoto similarity 
δ ≥ {0.4, 0.6}

• MolMIM achieves the highest QED and logP success 
rates

• Penalized logP results impacted by known exploit where 
identical functional groups are repeatedly added

Single Property Optimization with CMA-ES

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) 
and  S. C. Hoffman, et al, Nat Mach Intell. 4, 21–31 (2022)
QED and logP oracles from Therapeutic Data Commons.

†logP improvement limited to ≤ 20

Model
QED (%) Penalized logP
δ ≥ 0.4 δ ≥ 0.4 δ ≥ 0.6

AtomG2G 73.6 - -

HeirG2G 76.9 - -

DESMILES 77.8 - -

QMO 92.8 7.71 ± 5.65 3.73 ± 2.85

MolGrow - 8.34 ± 6.85 4.06 ± 5.61

GraphAF - 8.21 ± 6.51 4.98 ± 6.49

GraphDF - 9.19 ± 6.43 4.51 ± 5.80

CDGS - 9.56 ± 6.33 5.10 ± 5.80

FaST - 18.09 ± 8.72 8.98 ± 6.31

MolMIM 94.6 28.45 ± 54.67 7.60 ± 23.62

MolMIM 9.44 ± 4.12† 4.57 ± 3.87†
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query budget of 50,000 oracle calls per input molecule

• Success is % of molecules with QED ≥ 0.9 or penalized 
logP improvement while maintaining Tanimoto similarity 
δ ≥ {0.4, 0.6}

• MolMIM achieves the highest QED and logP success 
rates

• Penalized logP results impacted by known exploit where 
identical functional groups are repeatedly added

• Recall: MolMIM trained without chemical properties, 
activity, or fragment knowledge
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• Performed multi-objective molecule optimization to jointly 
optimize QED ≥ 0.6, SA ≤ 4.0, JNK3 ≥ 0.5, GSK4β ≥ 0.5

• Novelty is proportion of molecules with δ ≤ 0.4 relative to any 
molecule in active set

• Diversity is the  mean pairwise Tanimoto similarity across all 
compounds

Multi-Objective Property Optimization

Model
QED + SA + JNK3 + GSK4β 

Success (%) Novelty (%) Diversity

RationaleRL 74.8 56.1 0.621

MARS 92.3 82.4 0.719

JANUS 100 32.6 0.821

FaST 100 100 0.716

MolMIM (R) 97.5 71.1 0.791

MolMIM (A) 96.6 63.3 0.807

MolMIM (E) 98.3 55.1 0.767

MolMIM (E)† 99.2 54.8 0.772

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021) 
QED, SA, JNK3, and GSK4β oracles from Therapeutic Data Commons
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• Performed multi-objective molecule optimization to jointly 
optimize QED ≥ 0.6, SA ≤ 4.0, JNK3 ≥ 0.5, GSK4β ≥ 0.5

• Novelty is proportion of molecules with δ ≤ 0.4 relative to any 
molecule in active set

• Diversity is the  mean pairwise Tanimoto similarity across all 
compounds

• Optimization types:
§ Random: 2,000 ZINC15 test set molecules
§ Approximate: 551 molecules that satisfy QED ∈ [0.25, 0.4]; 

JNK3 and GSK4β ∈ [0.25, 0.35]
§ Exemplar: 741 molecules that satisfy success criteria
§ †With Tanimoto similarity ≥ 0.4

• MolMIM is competitive for success and diversity, but novelty 
has room for improvement
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MolMIM: Research to Productization

• Integration of MolMIM model into BioNeMo inference 
service

• Productionize model architecture and training framework

• Accelerated inference

• Improving encoder representations

• Wishlist: more relevant and comprehensive benchmarks – 
want to collaborate?



DiffDock Optimization: From Research 
to Enterprise Quality Software



DiffDock for Diffusion-Based Docking Pose Generation

IMAGE: https://github.com/gcorso/DiffDock
    G. Corso, H. Stärk, B. Jing, R. Barzilay, T. Jaakkola, Arxiv (2022).
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• Reducing numerical precision is a common method of 
accelerating both training and inference, e.g. FP32 à 
FP16

• However lower precision formats are more susceptible 
to overflows and can lead to numerical instabilities

• NVIDIA A100 GPUs support a math mode called 
TensorFloat32 (TF32), which strikes a balance between 
precision and performance

• Converting DiffDock weights to TF32 required changing 
one line of code and provided 1.8x speed up of inference, 
with no impact on benchmarked accuracy

• Similar optimizations are being tested with model 
training

GPU Specific Optimization of DiffDock with TF32

TF32 format:  https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
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• DiffDock is an equivariant model, data are represented in 
spherical basis

• One forward pass requires many multiplications involving 
irreducible representations of a given symmetry group, 
e.g. rigid rotations in 3D

• The tensor product operations are from the e3nn library 
and comprise a considerable part of computation time 
(see profile, green circle)

• BioNeMo includes a version of e3nn which has been 
accelerated with CUDA parallelism

• Profiling reveals other opportunities – data operations 
and other methods to maximize GPU use

Optimization of DiffDock Mathematical Operations
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• MD-assisted refinement of docked poses

• Dataset extension and management

• Drive research and development of accelerate compute 
functionality for equivariant models

DiffDock: Research to Productization
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Conclusion
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Conclusions

• BioNeMo is a framework and inference service for developing, training, 
deploying, and using deep learning models and tools for drug discovery

• BioNeMo surfaces NVIDIA hardware and software improvements relevant to 
life sciences and drives future development

• MolMIM is a cheminformatics model trained on only SMILES with a 
structured latent space and fixed size embedding for molecule design

• DiffDock acceleration and improvements in numerical stability drive future 
equivariant model optimizations

• BioNeMo framework open beta coming soon, enroll in service GA here: 
https://www.nvidia.com/bionemo

https://www.nvidia.com/bionemo/
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