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Language Models in Scientific

Discovery

Information from biomedical literature

Protein structure prediction and ligand

docking

Prediction of chemical reactions

Biomolecular property prediction
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From Sequence to 3D and Back Again

1 Fixed-backbone
design
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Qiao, Z., Nie, W., Vahdat, A, Miller, T.
F., Ill & Anandkumar, A. Dynamic-
Backbone Protein-Ligand Structure
Prediction with Multiscale
Generative Diffusion Models. arXiv

[g-bio.QM] (2022)

Verkuil, R. et al. Language models
generalize beyond natural proteins.
bioRxiv 2022.12.21.521521 (2022)
doiz10.1101/2022.12.21.521521

2 Structure

Generation
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Jing, B. et al.
EigenFold:
Generative protein
structure
prediction with
diffusion models.
arXiv [q-bio.BM]
(2023)

Lane, T. J. Protein
structure
prediction has
reached the single-
structure frontier.
Nat. Methods 1-4
(2023)
doi:10.1038/s4159
2-022-01760-4

3 Sequence
generation
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Ferruz, N., Schmidt, S. & Hocker,
B. ProtGPT2 is a deep
unsupervised language model for
protein design. Nat. Commun. 13,
4348 (2022)

Nijkamp, E., Ruffolo, J., Weinstein,
E. N, Naik, N. & Madani, A.
ProGenz2: Exploring the
Boundaries of Protein Language
Models. arXiv [cs.LG] (2022)

Munsamy, G., Lindner, S., Lorenz,
P. & Ferruz, N. ZymCTRL: a
conditional language model for
the controllable generation of
artificial enzymes.

Ferruz, N. et al. From sequence to function through structure: deep learning for protein design. bioRxiv 2022.08.31.505981 (2022) doi:10.1101/2022.08.31.505981

4 Sequence and
structure design

Lisanza, S. L. et al. Joint
generation of protein sequence
and structure with

RoseTTAFold sequence space
diffusion. bioRxiv
2023.05.08.539766 (2023)
doi:10.1101/2023.05.08.53976
6

Jin, W., Wohlwend, J., Barzilay,
R. & Jaakkola, T. Iterative
Refinement Graph Neural
Network for Antibody
Sequence-Structure Co-design.
arXiv [q-bio.BM] (2021)
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What is a Foundation Model?

Large scale (pre-)training - models are trained on vast amounts of data,
often multiple topics and modalities

Generality - capable of performing many different functions

Adaptability and fine tuning -- general purpose models can be
specialized for desired task

Accessibility - pre-trained models serve as a starting point for
researchers to build upon

Emergence - very large models can develop capabilities beyond those
that they were trained to perform

NVIDIA



NVIDIA Generative Al Life Sciences Software Stack

* Surface new technology from NVIDIA
hardware and software; and feedback

Predictive Generative domain specific advancements to
Models Models improve them

* GPU-accelerated life sciences

Surface New frameworks, e.g. BioNeMo, depend on
NVIDIA i
Technology Technology ~ CUDA and accelerated deep learning
libraries

PyTorch

* NVIDIA deployment libraries and (soon)
microservices bring accelerated model
inference and APIs to researchers and
developers

NVIDIA GPUs
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SMILES: a Natural Language Representation of Small Molecules
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Molecule
(SMILES)
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Anatomy of an Auto Encoder Model
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Deep Learning Models as Lego Blocks
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Objectives of a Cheminformatics Foundation Model

Representation and Translation Generation
Reaction New Molecule

Encoder Decoder Encoder : Decoder

Encoder

Molecule Molecule

Molecule

Cheminformatics foundation models can be applied to a wide range of predictive tasks (physical
chemical properties, retrosynthesis) and the generation of novel molecules
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A variational autoencoder (VAE) loss smooths the
latent space resulting in blurring

* MIM loss results in a clustered space

A Clustered Latent Space with Mutual Information Machine (MIM)
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Danny Reidenbach, Micha Livne, Rajesh lllango
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MolIMIM - Sampling Distance Can Be Tuned for Similarity

Small Perturbations Larger Perturbations
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Molecule Molecule Molecule Molecule Map
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Avg. Tanimoto Similarity

Probing Latent Structure by Molecule Interpolation
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—o— MolVAE
—o— PerBART

Pairwise interpolations between 1,000 molecules
performed at ten evenly spaced steps

Similarity between starting molecule and each
interpolated molecule calculated

Molecules sampled from baseline models (PerBART,
MolVAE) have reduced similarity at start and high
variance at early interpolation steps

MolMIM molecules are similar to each other and
have smallest variance at initial steps

Danny Reidenbach, Micha Livne, Rajesh lllango
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Measuring the Controllability of MolIMIM

Generation 1 Generation 2 Generation 3

* Hypothesis: having a structured latent space will improve
performance of property guided optimization

+ Chose covariance matrix adaptation (CMA-ES), which is a
zeroth order optimization method

* CMA-ES is non-parametric and uses only a single scoring Generation 4 Generation 5 Generation 6
function per sample

N. Hansen, A. Ostermeier, Evol. Comput. 9, 159-195 (2001). 14  <=nvibia.



Multi-Objective Property Optimization

_ QED + SA + JNK3 + GSK4g
* Performed multi-objective molecule optimization to jointly S8 Success (%) Novelty (%)  Diversity
optimize two molecular properties (QED and SA), and binding RationaleRL . 56 1 0621
to two targets (JNK3 and GSK4p).
MARS 923 82.4 0.719
+ Objective was to maximize success, novelty, and diversity
) JANUS 100 326 0.821
metrics.
FaST 100 100 0.716
* Optimization methods:
= Random: subset of randomly selected molecules MoIMIM (R) 975 711 0.791
. App'ro?(im_ate: sgbsgt of molecules that partially satisfy MolMIM (A) 96.6 63.3 0807
optimization criteria
= Exemplar: subset of molecules that satisfy all criteria MolMIM (E) 983 55.1 0.767

* MoIMIM is competitive for success and diversity -- novelty

has since been improved considerably

Danny Reidenbach, Micha Livne, Rajesh lllango

Results above solid bar as in B. Chen, X. Fu, R. Barzilay, T. Jaakkola, ArXiv (2021)
QED, SA, UNK3, and GSK4pB oracles from Therapeutic Data Commons
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MolMIM: Applied Research to Productization

EIf(lV > cs > arXiv:2208.09016

Computer Science > Machine Learning

[Submitted on 18 Aug 2022 (v1), last revised 29 Mar 2023 (this version, v2)]
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Improving Small Molecule Generation using Mutual Information Machine

Danny Reidenbach, Micha Livne, Rajesh K. llango, Michelle Gill, Johnny Israeli

We address the task of controlled generation of small molecules, which entails finding novel molecules with desired properties under
certain constraints (e.g., similarity to a reference molecule). Here we introduce MolMIM, a probabilistic auto-encoder for small molecule

A ICLR

Poster
in
Workshop: Machine Learning for Drug Discovery (MLDD)
Improving Small Molecule Generation using
Mutual Information Machine

Danny Reidenbach - Micha Livne - Rajesh Ilango - Michelle Gill - Johnny

Israeli

[ Abstract ] ( Project Page )

( ByPoster ) [ & OpenReview )
Fri 5 May 10 am. PDT — 10:55 a.m. PDT

vvvvvvv Machine (MIM) learning,

Jels can learn representations with
——F a dense latent space, and allows

of MoIMIM to several
easured in terms of validity,
ver MoIMIM's latent space for the
single property optimization
rate SOTA by more than 5\% . We
t space, whereas CMA-ES is often
ted regime, making it an attractive

MolIMIM and controlled generation is hallmark feature of
BioNeMo NIMs

Model released on BioNeMo framework and accelerated
inference workflows for controlled generation available
soon on NIMs

On-going work:
Improving encoder representations to make MolMIM
well-rounded foundation model

Development of more comprehensive benchmarks

N

AlphaFold2

MolIMIM Featured in
Jensen’s
2024 GTC Keynote:

NVIDIA.
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Improving Enzyme Function with Protein Language Models

Unaligned Sequences

QATAERELKFVVA

Transformer encoder & decoder

Family-specific

encoder & decoder QATAERELKFVVA
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Global dimensionality reduction

ProT-VAE: Protein Transformer Variational
AutoEncoder for Functional Protein Design

Emre Sevgen't, Joshua Moller't, Adrian Lange', John
Parker!, Sean Quigley', Jeff Mayer!, Poonam
Srivastaval, Sitaram Gayatri!, David Hosfield!, Maria
Korshunova?, Micha Livne?, Michelle Gill?, Rama,
Ranganathan!, Anthony B. Costa?" and Andrew L. Ferguson'”

Evozyne, Inc., 2430 N Halsted Street, Chicago, 60614, IL, USA.
2NVIDIA, 2788 San Tomas Expressway, Santa Clara, 95051, CA,
USA.

*Corresponding author(s). E-mail(s): acosta@nvidia.com;
andrew.ferguson@evozyne.com;
TThese authors contributed equally to this work.
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E. Sevgen, et al., bioRxiv, doi:10.1101/2023.01.23.525232.
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There’s No Such Thing as Too Many Fields
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From the journal:

Dynamics of GCN4 facilitate DNA
interaction: a model-free analysis of
an intrinsically disordered region

Michelle L. Gill ,?® R.Andrew Byrd? and Arthur G. Palmer, I11*@

Pr

~_| Physical Chemistry Chemical Physics

20 1.0 : . . - 25
0.8 20+
_1sf
= —~
2 So.6f 215l
410 a * @
& 2 ) g )
s %04 2 1o}
© . =
' 4 Resi 3-12 3 5 [}
5F +# Resi 13-25 - 0ol sl
4 Resi 26-55 '
4 Resi 55-58 [}
0 , , \ 0 . . . . 0 \ | \
0 5, 10 15 20 o 04 06 08 1.0 0 10 15 20 25
S 1y (ns, MF) s (MF) Ty (ns, MF)
19

<ANVIDIA.



If You Can’t Collect Enough Data, Simulate It

Minimize [|flj; subject to Rx=b
L1 IRL1

1AL =% 1l = D @£

Ifl=Afi 4 fe 0" =1/(f) +€)

Gaussian-SL0

| |f| |310 = z (1 — eﬁ-s‘fk\z/az )

J Biomol NMR
DOI 10.1007/s10858-015-9923-x

ARTICLE

Efficient and generalized processing of multidimensional
NUS NMR data: the NESTA algorithm and comparison
of regularization terms

Shangjin Sun® - Michelle Gill' - Yifei Li' - Mitchell Huang - R. Andrew Byrd"
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Don’t Miss the Forest Through the (NMR) Peaks

T Google DeepMind About  Technologies Impact  Discover
Pooling 2048 204%

Overvie w  Blog ThePodcast Visualising Al

RESEARCH

AlexNet Won ImageNet Challenge in 2012 AlphaFold Won CASP13in 2018
Q:, 7: 1000 S

. AlphaFold: a solution to a 50-year-old
AlexNet didn't just win; it dominated. AlexNet grand challenge in biology

was unlike the other competitors. This new

model demonstrated unparalleled performance

on the largest image dataset of the time,
ImageNet. This event made AlexNet the first
widely acknowledged, successful application of
deep learning.

CASP15: AlphaFold's success spurs new challenges in ...

Dec 14, 2022 — Two years later, AlphaFold still dominates the competition. Deepmind itself did
not participate in this round, but AlphaFold has been open ...

21 <ANVIDIA.
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Ingraham, J. et al. llluminating protein space with a programmable generative model. (2022) doi:10.1101/2022.12.01.518682.




NMR and Deep Learning are Complementary
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AlphaFold is an (Awesome) Tool, Not a Panacea:
Open Challenges That NMR Can Address

Incorporation of dynamics and intrinsically disordered regions in
structure prediction

Study of multimeric proteins with ligands and/or co-factors
Achievement of structure resolution suitable for drug discovery
Improved prediction of protein — protein interactions

Influence of post-translational modifications on structure

NVIDIA.



Thank You, Andy!




