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These results are described in Gill, et. al, Phys. Chem. Chem. Phys.,  (green) and determined from simulations [2] (red). the basic domain. (B) Regions of GCN4 cluster based on dynamical parameters.
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(Sd+dc)ons ) Figure 6. Comparison of dynamical parameters from Model-free (blue) analysis
I =J(0)(3d" +4C7)/ 6 and spectral density mapping (red) for global motions, (A) S2 and (B) Tm, and
6 E14 R17 E14 R17 internal motions, (C) Ss? and (D) 1s. (E—G) Global motions determined from Model-
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3 S * The correlation time of slow internal motions (ts, 1.4-2.5 ns) is faster than both
o1 18 A2l = _R18 _A21 the estimated binding rate of GCN4 to DNA and the experimentally determined
2 3 off-rate
 Slow internal motions could facilitate encounter complex formation and
subsequent rearrangement upon substrate binding
* |ndicates possible subsequent roles for conformational selection and induced fit
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