Development of ²⁰⁵TI-NMR for the Direct Study of Monovalent Metal lons and Ligands in Nucleic Acids

Michelle Lynn Gill Scott A. Strobel and J. Patrick Loria Laboratories May 30, 2006

Thallium as a potassium surrogate

Thallium (TI⁺) and potassium (K⁺) have similar

- Atomic radii—1.40 Å for TI⁺ and 1.33 Å for K⁺
- Dehydration energies—77.6 kcal/mol and 76.4 kcal/mol
- Coordination geometries and bond lengths—2.4–2.7 Å

TI⁺ has been able to support enzymatic activity in many systems, including the ribosome

Importance of monovalent cations

KcsA channel from Streptomyces lividans

Monovalent cations are found in:

- Proteins *potassium channel*, *pyruvate kinase*, *Na*+–*K*+ *ATPase*
- Phospholipids phosphatidylinositol 4,5-bisphosphate, phosphatidylserine bilayers
- Carbohydrates
 proteoglycans, heparin
- Nucleic acids ribosome, group I intron, SRP

Monovalent cations in nucleic acids

Azoarcus group I intron tetraloop receptor

Escherichia coli signal recognition particle

Adams, P.L.; et. al. *Nature*. **2004**, *430*, 45-50. Stahley, M. R.; Strobel, S. A. *Science*. **2005**, *309*, 1587-90. Basu, S.; et. al. *Nat. Struct. Biol.* **1998**, *5*, 986-92. Abramovitz, D.L.; Pyle, A.M. *J. Mol. Biol.* **1997**, *266*, 493-506. Batey, R. T.; et. al. *Science*. **2000**, *287*, 1232-9. Batey, R. T.; Doudna, J. D. *Biochemistry*. **2002**, *41*, 11703-10.

Monovalent cations in nucleic acids

Haloarcula marismortui 50S ribosome peptidyl transferase center

Escherichia coli L11-binding 23S rRNA

Pestka, S. *Proc. Natl. Acad. Sci. USA.* 1972, 69, 624-8.
Ban, N.; et. al. *Science.* 2000, 289, 905-20.
Nissen, P.; et. al. *Science.* 2000, 289, 920-30.
Conn, G. L.; et. al. *Science.* 1999, 284, 1171-4.
Conn, G. L.; et. al. *J. Mol. Biol.* 2002, 318, 963-73.

Why study monovalent metals by NMR?

- Number and position of monovalent binding sites
- Cation exchange rates and bound lifetimes
- Rapidly study effects of cation site perturbation
- Functional groups coordinating the cation(s)
- Dynamics of monovalent ligands
- Formation of single crystals not required

Lack of technique for direct observation has precluded the solution study of monovalent cations

TI+ is an excellent mimic of K+ 205 TI+ is a spin ½ nucleus with a large gyromagnetic ratio 1 H > 19 F > 205 TI > 31 P

A model system for development of ²⁰⁵TI-NMR

- The sequence G4T4G4 is from the telomeres of the ciliate *Oxytricha nova*
- It forms a homodimeric G-quadruplex, d(G4T4G4)2, in vitro
- G-quadruplex contains four G-quartets, each composed of four guanine bases
- Potential target for cancer therapies
- Lipophilic G-quadruplexes have been used as model systems for ion channels
- Exceptionally stable and structures have been solved by NMR and X-ray crystallography

Na⁺-, K⁺-, and NH₄⁺-forms of $d(G_4T_4G_4)_2$

- $d(G_4T_4G_4)_2$ has been shown to bind Na⁺, K⁺, and NH₄⁺
- Binds 3–5 monovalent cations per G-quadruplex
- Position of metal binding varies by metal type

Horvath, M.P.; Schultz, S.C. J. Mol. Biol. 2001, 310, 367-77.
Haider, S.; et. al. J. Mol. Biol. 2002, 320, 189-200.
Schultze, P.; et. al. Nucleic Acids Res. 1999, 27, 3018-28.

Previous ²⁰⁵**TI NMR studies in nucleic acids**

- Demonstrated that TI+ supports formation of the four stranded G-quadruplex, $d(T_2G_4T_2)_4$
- No specific assignment of monovalent binding sites was made
- First ²⁰⁵TI NMR study in nucleic acids

Solution structure of TI^+ -form of $d(G_4T_4G_4)_2$

- NMR experiments

 1H–1H NOESY (distance constraints)
 1H–1H DQF-COSY (dihedral angles)
 1H–1H TOCSY

 31P–1H COSY
- Structure calculation Hydrogen bond, symmetry, and planarity constraints *Ab initio* simulated annealing performed in CNS

¹H chemical shift similarities

The TI^+ -form of $d(G_4T_4G_4)_2$ is K^+ -like

		1				
	Ensemble RM					
	All atoms (Top 10)	0.76 ± 0.16 Å	,			
	K ⁺ -NMR Structure	1.17 ± 0.13 Å				
	Average violation					
	NOE (> 0.5 Å)	0 ± 0	,			
	Dihedrals (> 5°)	0 ± 0				
	NOE Restraints					
	Total	395				
	Intraresidue	241				
	Interresidue	154				
	Long-range	38				
	Exchangeable	56				
Na ⁺ -form TI ⁺ -form K ⁺ -form						
		ø				

Smith, F.W.; Feigon, J. *Biochemistry*. **1993**, *32*, 8682-92. Schultze, P.; et. al. *Nucleic Acids Res.* **1999**, *27*, 3018-28.

Five ²⁰⁵TI peaks observed by ²⁰⁵TI-NMR

2.5 mM d(G4T4G4)2, 50 mM TINO3, 10% D2O, 298 K

Where are each of the downfield ²⁰⁵Tl peaks bound?

Possible TI^+ binding sites in $d(G_4T_4G_4)_2$

- Possible monovalent binding sites include G-quadruplex channel, grooves, and thymine loops
- Groove binding sites expected to have shorter residence times and be less cation specific
- Symmetry for outer channel and loop binding sites

G-quadruplex stabilization by TI⁺

- All downfield ²⁰⁵TI peaks have similar temperature sensitivity
- TI⁺ stabilizes d(G4T4G4)2 at least as well as Na⁺, K⁺, and NH4⁺

Dingley, A.J.; et. al. *J. Am. Chem. Soc.* **2005**, *127*, 14466-72. Hud, N.V.; et. al. *J. Mol. Biol.* **1999**, *285*, 233-43. Deng,H.; Braunlin, W.H. *J. Mol. Biol.* **1996**, *255*, 476-83.

Specificity of downfield ²⁰⁵Tl peaks

- Cs⁺ is too large to bind inside G-quadruplex TI⁺ 1.40 Å *vs.* Cs⁺ 1.69 Å
- Competes well for groove-associated sites
- No change in downfield peaks at 6X excess Cs⁺

Wong, A.; Wu, G. J. Am. Chem. Soc. 2003, 125, 13895-905.

Can all ²⁰⁵TI⁺ peaks be occupied by K⁺?

• None of the downfield ²⁰⁵TI peaks are from adventitious TI⁺ binding

Measurement of bound ²⁰⁵TI⁺ lifetimes

- Measures exchange of ²⁰⁵TI⁺ from free to "bound" sites
- Can determine lifetimes of ²⁰⁵TI⁺ in each of these sites
- Simplified two-site exchange model assumed

Bound lifetimes of downfield ²⁰⁵TI⁺ ions

Classification of downfield²⁰⁵**TI peaks**

How many G-quadruplex TI⁺ binding sites exist?

Crystallization of the TI⁺-form of d(G₄T₄G₄)₂

Crystallized in 85 mM K⁺ Soaked in 50 mM TI⁺

Crystallographic Data					
Space group	P212121				
Cell dimensions (Å)	27.38, 48.21, 96.20				
Wavelength (Å)	0.979				
Resolution range (Å)	43.11-1.55				
R-factor (%)	24.1				
Rfree (%)	25.8				

Coordination of TI^+ ions by $d(G_4T_4G_4)_2$

- Only five ordered TI⁺ binding sites exist—three within Gquadruplex channel and two in the loops
- All metal occupancies are 100%

Thymine loops mediate crystal packing

- Asymmetric unit contains two G-quadruplexes
- Thymine loops (T6 and T8) facilitate packing via a pair of intermolecular hydrogen bonds

Evidence for conformational exchange in loops

- Thymine loops are in a different conformation in x-ray and solution structures
- T8 is extended in Na⁺, K⁺, and TI⁺ x-ray structures
- Thymine protons have faster transverse relaxation rate than those in G-quartet

Haider, S.; et. al. J. Mol. Biol. 2002, 320, 189-200.

¹H–M²⁺ scalar couplings in proteins

Rubredoxin from *Pyrococcus furiosus*

- Spin ½ divalent surrogates (¹¹³Cd²⁺ and ¹⁹⁹Hg²⁺) used to study rubredoxin, metallothionein, superoxide dismutase, and the transcription factors GAL4 and LAC9
- Spin-echo difference experiment used to detect small, metal-protein scalar couplings

Blake, P.R.; et. al., *J. Biomol. NMR.* **1992**, *2*, 527-33.

Where are the ²⁰⁵TI⁺ ions bound?

²⁰⁵TI⁺ is scalar coupled to G H1/H8 protons

Imino (H1) scalar couplings to bound ²⁰⁵TI⁺ ions

Aromatic (H8) scalar couplings to bound ²⁰⁵TI⁺ ions

Quantitation of J_{H-TI}

<i>Ј</i> _{н-т}	_l (Hz)	Peak 2	Peak 3		
1)	G1/9	0.46 ± 0.04	-		
H)	G2	0.54 ± 0.04	0.51 ± 0.06		
ino	G4	0.95 ± 0.06	-		
E	G10	-	0.44 ± 0.03		
(G1	0.34 ± 0.06	-		
(H8	G2	0.44 ± 0.05	0.52 ± 0.03		
tic	G3	0.49 ± 0.02	0.65 ± 0.01		
ma	G9	0.34 ± 0.04	-		
Aro	G10	0.49 ± 0.04	0.56 ± 0.02		
	G11	0.47 ± 0.03	0.40 ± 0.02		
$S_0 - S_1 = 1 \cos(2\pi I - \pi)$					
$S_0 = 1 - \cos(2\pi J_{H-T_1}t)$					

- $^{1}\text{H}-\text{M}^{2+}$ couplings as small as 0.29 \pm 0.03 Hz reported for $^{113}\text{Cd}^{2+-}$ substituted rubredoxin
- Scalar coupling magnitude could be used to determine ligand orientation for vicinal couplings

• Direct, though-space interaction with ¹H possible

Blake, P.R.; et. al. J. Biomol. NMR. 1992, 2, 527-33.

¹H^{_205}TI scalar coupling could be mediated by Gua O6 which coordinates ²⁰⁵TI⁺

- Scalar couplings have been shown to traverse hydrogen bonds
- Multiple pathways may contribute to the observed value

Grzesiek, S.; et. al. *Methods Enzymol.* 2001, 338, 111-33.

H8–²⁰⁵TI⁺ distance is too long to be a direct interaction

Five bond ¹H–M²⁺ scalar couplings have been reported

Blake, P.R.; et. al. J. Biomol. NMR. 1992, 2, 527-33.

• ²⁰⁵TI⁺ has been reported to interact strongly with Gua N7

• Contributions from both pathways are possible

Taylor, E.C.; et. al. *J. Org. Chem.* **1969**, *34*, 1170. Lee, A.G. <u>The Chemistry of Thallium</u>, 1971.

Assignment of bound ²⁰⁵TI peaks

• What is the assignment for ²⁰⁵TI peaks 1 and 4?

Possible assignment of ²⁰⁵TI peak 1

- TI⁺ binds to loops in crystal structure of d(G4T4G4)2
- Most likely assignment is to the thymine loops
- Why aren't ¹H–²⁰⁵Tl scalar couplings observed to this peak?
- One possible explanation: conformational exchange

Possible assignment of ²⁰⁵TI peak 4

 Peak 4 could result from TI⁺ binding to loops in an alternate conformation

 Why are there two ²⁰⁵TI peaks but only one set of ¹H resonances for thymine loops?

Effect of ²⁰⁵TI chemical shift on exchange limit

- ²⁰⁵TI peaks 1 and 4 are separated by over 40 ppm (large $\Delta \omega$)
- This same $\Delta \omega$ translates to 23 ppm on ¹H chemical shift scale
- $\Delta \omega$ (¹H) << $\Delta \omega$ (²⁰⁵Tl)
- Slow exchange limit is much larger for ²⁰⁵Tl
- Conformational exchange is fast on ¹H time scale and slow on ²⁰⁵TI time scale

Conclusions

- TI⁺ is an excellent mimic of K⁺ for NMR studies
- ²⁰⁵TI-NMR can be used to study bound ²⁰⁵TI⁺ cations
- ¹H²⁰⁵TI scalar couplings enable assignment of ²⁰⁵TI peaks to monovalent binding sites
- Could provide constraints for structure determination
- The first ²⁰⁵TI heteronuclear NMR experiment reported
- Large ²⁰⁵TI chemical shift imparts generous limit on slow exchange

Acknowledgements

Advisors & Committee

Professor Scott Strobel Professor J. Patrick Loria Professor Anna Pyle

Expertise & Collaboration

Professor Kurt Zilm Professor Victor Batista Dr. Jose Gascon Christina Ragain

University of Wisconsin Professor Samuel Butcher Jared Davis

University of Notre Dame Professor Thomas Nowak Dr. Jarislav Zajicek

University of California-Irvine Professor Melanie Cocco

Chemistry Instrument Center

Dr. Xiaoling Wu Dr. Eric Paulson Dr. Ben Bangerter

CSB Staff

Dr. Michael Strickler Dr. Jimin Wang Paul Pepin Dave Keller Art Perlo

Brookhaven NSLS X-25 Beamline Staff

Director of Graduate Studies

Professor Mark Solomon Professor Nigel Grindley

Funding

NSF Graduate Fellowship NIH R01 GM61249

Acknowledgements

The Strobel Lab

Current Members Jesse Cochrane Mary Stahley Ethan Butler Sarah Lipchock Dave Kingery **Rebecca Vorhees** Alexandra Antonioli Dr. Josh Weinger Dr. Dave Hiller Dr. Ian Suydam Dr. Emmanuel Pfund Dr. Minghong Zong Dr. Miyun Kwon Dr. Kevin Huang Dr. Nicolas Carrasco

Past Members Anne Kosek Dr. K. Mark Parnell Dr. Amy White Dr. Ashley Hesslein Dr. Laura Szewczak Dr. Rachel Anderson Dr. Peter Adams The Loria Lab Current Members James Lipchock Christina Ragain Rebecca Berlow TJ Yan Wang Eric Watt Hong Jin Dr. Evgueni Kovriguine Dr. Hiroko Shimada

Past Members Professor Jim Kempf Dr. Dagny Ulrich Dr. Roger Cole

MB&B 2001 Class

Family

Dr. Allen and Jeanne Sippel Robert and Cheryl Gill Robert Gill