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Thallium (Tl+) and potassium (K+) have similar 
• Atomic radii—1.40 Å for Tl+ and 1.33 Å for K+

• Dehydration energies—77.6 kcal/mol and 76.4 kcal/mol 
• Coordination geometries and bond lengths—2.4–2.7 Å

Tl+ has been able to support enzymatic activity in many 
systems, including the ribosome

Thallium as a potassium surrogate



Monovalent cations are found in:

• Proteins
potassium channel, pyruvate kinase, 
Na+–K+ ATPase

• Phospholipids
phosphatidylinositol 4,5-bisphosphate, 
phosphatidylserine bilayers

• Carbohydrates
proteoglycans, heparin

• Nucleic acids
ribosome, group I intron, SRP

Importance of monovalent cations

KcsA channel from Streptomyces lividans
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Monovalent cations in nucleic acids
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Monovalent cations in nucleic acids
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Why study monovalent metals by NMR?

• Number and position of monovalent binding sites
• Cation exchange rates and bound lifetimes
• Rapidly study effects of cation site perturbation
• Functional groups coordinating the cation(s)
• Dynamics of monovalent ligands
• Formation of single crystals not required

Tl+ is an excellent mimic of K+
205Tl+ is a spin ½ nucleus with a large gyromagnetic ratio

1H > 19F > 205Tl > 31P

Lack of technique for direct observation
has precluded the solution study of monovalent cations



A model system for development of 205Tl-NMR
• The sequence G4T4G4 is from the telomeres of the 

ciliate Oxytricha nova
• It forms a homodimeric G-quadruplex, d(G4T4G4)2, 

in vitro
• G-quadruplex contains four G-quartets, each 

composed of four guanine bases
• Potential target for cancer therapies
• Lipophilic G-quadruplexes have been used as 

model systems for ion channels

• Exceptionally stable and structures have been 
solved by NMR and X-ray crystallography



K+

• d(G4T4G4)2 has been shown to bind Na+, K+, and NH4+

• Binds 3–5 monovalent cations per G-quadruplex
• Position of metal binding varies by metal type

Horvath, M.P.; Schultz, S.C. J. Mol. Biol. 2001, 310, 367-77.
Haider, S.; et. al. J. Mol. Biol. 2002, 320, 189-200. 

Schultze, P.; et. al. Nucleic Acids Res. 1999, 27, 3018-28. 

Na+

Na+-, K+-, and NH4
+-forms of d(G4T4G4)2



Previous 205Tl NMR studies in nucleic acids

• Demonstrated that Tl+ supports formation of the four stranded 
G-quadruplex, d(T2G4T2)4

• No specific assignment of monovalent binding sites was made
• First 205Tl NMR study in nucleic acids

Basu, S.; et. al., J. Am. Chem. Soc. 2000, 122, 3240-1. 

d(T2G4T2)4



Solution structure of Tl+-form of d(G4T4G4)2

• NMR experiments
1H–1H NOESY (distance constraints)
1H–1H DQF-COSY (dihedral angles)
1H–1H TOCSY
31P–1H COSY

• Structure calculation
Hydrogen bond, symmetry, and planarity constraints
Ab initio simulated annealing performed in CNS



1H chemical shift similarities

Schultze, P.; et. al., Nucleic Acids Res 1999, 27, (15), 3018-28.
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The Tl+-form of d(G4T4G4)2 is K+-like

Thymine loops

G-quartets

Smith, F.W.; Feigon, J. Biochemistry. 1993, 32, 8682-92.
Schultze, P.; et. al. Nucleic Acids Res. 1999, 27, 3018-28. 



Five 205Tl peaks observed by 205Tl-NMR
Free 205Tl peak

Four downfield 205Tl peaks

1

2

3
4

Where are each of the downfield 205Tl peaks bound?

2.5 mM d(G4T4G4)2, 50 mM TlNO3, 10% D2O, 298 K



Possible Tl+ binding sites in d(G4T4G4)2

• Possible monovalent binding sites include G-quadruplex 
channel, grooves, and thymine loops

• Groove binding sites expected to have shorter residence times 
and be less cation specific

• Symmetry for outer channel and loop binding sites

Grooves

Loops

Channel



G-quadruplex stabilization by Tl+

Imino Proton

• All downfield 205Tl peaks have similar temperature sensitivity
• Tl+ stabilizes d(G4T4G4)2 at least as well as Na+, K+, and NH4+ 

Folded

Unfolded

Dingley, A.J.; et. al. J. Am. Chem. Soc. 2005, 127, 14466-72.
Hud, N.V.; et. al. J. Mol. Biol. 1999, 285, 233-43.

Deng,H.; Braunlin, W.H. J. Mol. Biol. 1996, 255, 476-83. 



• Cs+ is too large to bind inside G-quadruplex
Tl+ 1.40 Å vs. Cs+ 1.69 Å

• Competes well for groove-associated sites
• No change in downfield peaks at 6X excess Cs+

Wong, A.; Wu, G. J. Am. Chem. Soc. 2003, 125, 13895-905. 

Specificity of downfield 205Tl peaks

0 mM Cs+ 300 mM Cs+
50 mM Tl+



Can all 205Tl+ peaks be occupied by K+?

Imino Proton

• None of the downfield 205Tl peaks are from adventitious Tl+ binding



Measurement of bound 205Tl+ lifetimes
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• Measures exchange of 205Tl+ from free to “bound” sites

• Can determine lifetimes of 205Tl+ in each of these sites

• Simplified two-site exchange model assumed

Forsén, S.; Hoffman, R.A. J. Chem. Phys. 1964, 40, 1189-96.

Forsén, S.; Hoffman, R.A. J. Chem. Phys. 1963, 39, 2892-901.
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Bound lifetimes of downfield 205Tl+ ions

Peak 1 80 ± 10 ms
Peak 2 110 ± 10 ms
Peak 3 100 ± 20 ms
Peak 4 150 ± 60 ms
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Classification of downfield 205Tl peaks

Free 205Tl+

205Tl+ bound to G-quadruplex

1
2

3
4

How many G-quadruplex Tl+ binding sites exist?



Crystallization of the Tl+-form of d(G4T4G4)2

Haider, S.; et. al. J. Mol. Biol. 2002, 320, 189-200. 

Crystallized in 85 mM K+

Soaked in 50 mM Tl+



50 mM Tl+
Anomalous Difference Map, 3.5 σ

• Only five ordered Tl+ binding sites exist—three within G-
quadruplex channel and two in the loops

• All metal occupancies are 100%

Coordination of Tl+ ions by d(G4T4G4)2



Thymine loops mediate crystal packing

• Asymmetric unit contains two G-quadruplexes 
• Thymine loops (T6 and T8) facilitate packing via a pair of 
intermolecular hydrogen bonds



• Thymine loops are in a different conformation in x-ray and solution structures
• T8 is extended in Na+, K+, and Tl+ x-ray structures
• Thymine protons have faster transverse relaxation rate than those in G-quartet

Evidence for conformational exchange in loops

Haider, S.; et. al. J. Mol. Biol. 2002, 320, 189-200. 



1H–M2+ scalar couplings in proteins

• Spin ½ divalent surrogates (113Cd2+ and 199Hg2+) used to study 
rubredoxin, metallothionein, superoxide dismutase, and the transcription 
factors GAL4 and LAC9

• Spin-echo difference experiment used to detect small, metal-protein 

scalar couplings

Rubredoxin from Pyrococcus furiosus

113Cd2+

Ile7

Ala43

Cys38

Ile40

Cys41

Cys8
JH–Cd

Blake, P.R.; et. al., J. Biomol. NMR. 1992, 2, 527-33.



Where are the 205Tl+ ions bound?

1H–205Tl Spin-Echo Difference Experiment



205Tl+ is scalar coupled to G H1/H8 protons
H8

H1

1
2

3
4



Imino (H1) scalar couplings to bound 205Tl+ ions



Aromatic (H8) scalar couplings to bound 205Tl+ ions



Quantitation of JH–Tl

H8

H1

Blake, P.R.; et. al. J. Biomol. NMR. 1992, 2, 527-33.

• 1H–M2+ couplings as small as 0.29 ± 0.03 Hz reported for 113Cd2+-
substituted rubredoxin

• Scalar coupling magnitude could be used to determine ligand orientation 
for vicinal couplings



Possible mechanisms for Imino 1H–205Tl couplings



Blake, P.R.; et. al. J. Biomol. NMR. 1992, 2, 527-33.

• Direct, though-space interaction with 1H possible

3.5 Å

Possible mechanisms for Imino 1H–205Tl couplings



1H–205Tl scalar coupling could be mediated by Gua O6 which coordinates 205Tl+

Possible mechanisms for Imino 1H–205Tl couplings



Possible mechanisms for Imino 1H–205Tl couplings

• Scalar couplings have been shown to traverse hydrogen bonds
• Multiple pathways may contribute to the observed value

Grzesiek, S.; et. al. Methods Enzymol. 2001, 338, 111-33.



Possible mechanisms for Imino 1H–205Tl couplings



H8–205Tl+ distance is too long to be a direct interaction

X7.5 Å

Possible mechanisms for Imino 1H–205Tl couplings



Five bond 1H–M2+ scalar couplings have been reported

Possible mechanisms for Imino 1H–205Tl couplings

Blake, P.R.; et. al. J. Biomol. NMR. 1992, 2, 527-33.



Taylor, E.C.; et. al. J. Org. Chem. 1969, 34, 1170.
Lee, A.G. The Chemistry of Thallium, 1971.

• 205Tl+ has been reported to interact strongly with Gua N7
• Contributions from both pathways are possible

Possible mechanisms for Imino 1H–205Tl couplings

5.0 Å



Assignment of bound 205Tl peaks

Peak 2 Peak 3

1
2

3
4

2 : 1

• What is the assignment for 205Tl 
peaks 1 and 4?

? ?

80 ± 10 110 ± 10 100 ± 20 150 ± 60Lifetime (ms):



Possible assignment of 205Tl peak 1
Peak 2 Peak 3

• Tl+ binds to loops in crystal 
structure of d(G4T4G4)2

• Most likely assignment is to 
the thymine loops

• Why aren’t 1H–205Tl scalar 
couplings observed to this 
peak?

• One possible explanation: 
conformational exchange

Peak 1



Possible assignment of 205Tl peak 4

Peak 2 Peak 3

• Peak 4 could result from 
Tl+ binding to loops in an 
alternate conformation

• Why are there two 205Tl 
peaks but only one set of 
1H resonances for thymine 
loops?

Peak 1 Peak 4



Effect of 205Tl chemical shift on exchange limit

1
2

3
4

40 ppm

• 205Tl peaks 1 and 4 are separated by over 40 ppm (large Δω)
• This same Δω translates to 23 ppm on 1H chemical shift scale
• Δω (1H) << Δω (205Tl) 
• Slow exchange limit is much larger for 205Tl
• Conformational exchange is fast on 1H time scale and slow on 

205Tl time scale

205Tl:

1H:
Thymine 1H



Conclusions

• Tl+ is an excellent mimic of K+ for NMR studies

• 205Tl-NMR can be used to study bound 205Tl+ cations

• 1H–205Tl scalar couplings enable assignment of 205Tl 
peaks to monovalent binding sites

• Could provide constraints for structure determination

• The first 205Tl heteronuclear NMR experiment reported

• Large 205Tl chemical shift imparts generous limit on slow 
exchange
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