Learning from Text: Natural Language Processing with Python ODSC East May 3, 2017

Michelle L. Gill, Ph.D. Senior Data Scientist, Metis michelle@thisismetis.com

github.com/mlgill/ODSC_East_2017_PythonNLP

Metis Data Science Training

- Data Science Bootcamp
 - 12 Week, In-Person
 - New York, San Francisco, Chicago, Seattle
- Corporate Training
 - Python for Data Science
 - Machine Learning
 - Natural Language Processing
 - Spark
- Evening Professional Development Courses
- Explore Data Science Online Training

thisismetis.com

Data Generated Each Minute

Much of this data is text

- Email
- Text messages
- News articles
- Blogs
- Twitter
- Reviews
- 204,000,000 Emails
- 4,000,000 Google Search Queries
- 277,000 Tweets
- 26,380 Yelp Reviews

How is this Useful?

- Information retrieval
- Classification and clustering
- Sentiment analysis
- Recommendation systems

How to Represent Text?

For machine learning tasks structured, numeric data is desired

Problem

Text is unstructured and contains limited numeric values

Creating Numerical Features

 Split text into words (tokenization)

"This is an example"

[This, is, an, example]

Creating Numerical Features

- Split text into words (tokenization)
- Numerically encode words (one-hot encoding)

This = [1, 0, 0, 0]is = [0, 1, 0, 0]an = [0, 0, 1, 0]example = [0, 0, 0, 1]

Creating Numerical Features

- Split text into words (tokenization)
- Numerically encode words (one-hot encoding)
- Represent documents by their numerical tokens

	This	is	an	example
Doc 1	1	1	1	1
Doc 2	1	1	0	0
Doc 3	0	1	1	0

Creating Numerical Features with Python

Code
import pandas as pd
from sklearn.feature_extraction.text
<pre>import CountVectorizer</pre>

'And the third one.']

document first is one second the third this and 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 2 0 1 1 0 0 0 1 1 0

Output

Is That All?

- How much information is contained in a word?
- Can more information be gained?
- What assumptions are being made?

Preprocessing Text

- How to tokenize: single word? multiple words?
- Remove: capital letters, punctuation, common words
- Word order and co-occurrence
- Convert to roots: running --> ran
- Misspellings
- Different languages
- Weight words equally or differently?

Preprocessing Examples

- Common words such as "the", "I", and "a" can be removed
- These are called "stop words"

```
ex = CountVectorizer(stop_words='english')
x = ex.fit_transform(['this is an example with stop words'])
pd.DataFrame(x.toarray(), columns = ex.get_feature_names())
```

example	stop	words
1	1	1

Preprocessing Examples

- Words can be reduced to their root form
- This is called "stemming" or "lemmatization"

```
import nltk
stemmer = nltk.stem.porter.PorterStemmer()
print stemmer.stem('run')
run
print stemmer.stem('running')
run
```


Preprocessing Examples

- Word order can be captured by joining words together
- These are called "n-grams"

```
text = ['this is a bigram example']
bigram_vectorizer = CountVectorizer(ngram_range=(2,2))
X = bigram_vectorizer.fit_transform(text)
pd.DataFrame(X.toarray(), columns=bigram_vectorizer.get_feature_names())
```

bigram example	is bigram	this is
1	1	1

Other Preprocessing Considerations

- Presupposition: implicit assumptions
 - Jane no longer writes fiction (Jane once wrote fiction)
- Word relationships:
 - Substitution: red and blue, Saturday and Sunday
 - Co-occurrences: car and drive
- Sparsity
 - High dimensionality
 - Similarity and meaning

Other Preprocessing Considerations

- Chunking segments and labels sentences
- Like parts-of-speech tagging with sentence structure included

s IN NP NP VBD JJ NN barked at ΝN DT JJ DT yellow little dog the the cat

Practice Preprocessing

01_Text_Preprocessing_Walkthrough

02_Text_Preprocessing_Exercises

What is Machine Learning?

Machine learning allows computers to learn and infer from data.

Types of Machine Learning

Supervised

Data points have known outcome (prediction)

- **Regression**: predict continuous value
- Classification: predict categorical value

Unsupervised

Data points have unknown outcome (find structure)

- **Clustering**: group observations
- **Dimensionality reduction**: reduce features

Machine Learning Vocabulary

- Features
- Observations
- Labels

sepal length	sepal width	petal length	petal width	species
6.7	3.0	5.2	2.3	virginica
6.4	2.8	5.6	2.1	virginica
4.6	3.4	1.4	0.3	setosa
6.9	3.1	4.9	1.5	versicolor
4.4	2.9	1.4	0.2	setosa
4.8	3.0	1.4	0.1	setosa
5.9	3.0	5.1	1.8	virginica
5.4	3.9	1.3	0.4	setosa
4.9	3.0	1.4	0.2	setosa
5.4	3.4	1.7	0.2	setosa

Machine Learning Vocabulary

3.4

1.7

0.2

setosa

sepal length sepal width petal length petal width species • Features virginica 6.7 3.0 5.2 2.3 Observations 6.4 2.8 2.1 virginica 5.6 3.4 0.3 4.6 1.4 setosa Labels ullet3.1 6.9 4.9 1.5 versicolor 2.9 1.4 4.4 0.2 setosa 3.0 1.4 4.8 0.1 setosa 5.9 3.0 5.1 1.8 virginica 5.4 3.9 1.3 0.4 setosa 4.9 3.0 1.4 0.2 setosa 5.4

Machine Learning Vocabulary

 Epaturos 	sepal length	sepal width	petal length	petal width	species
T Calures	6.7	3.0	5.2	2.3	virginica
 Observations 	6.4	2.8	5.6	2.1	virginica
	4.6	3.4	1.4	0.3	setosa
 Labels 	6.0	3.1	4.9	1.5	versicolor
	4.4	2.9	1.4	0.2	setosa
	4.8	3.0	1.4	0.1	setosa
	5.9	3.0	5.1	1.8	virginica
	5.4	3.9	1.3	0.4	setosa
	4.9	3.0	1.4	0.2	setosa
	5.4	3.4	1.7	0.2	setosa

What are the Text Features?

- Tokenized words
- N-grams
- Parts-of-speech tags
- Chunks
- Syntactic structure
- etc.

Text Classification

- Want to predict a categorical variable
 - Example: Predict if an email is spam or not
- Given
 - X: Email text
 - Y: Spam or not spam
- Goal: Build model that predicts if a new email is spam or not

Many Choices for Model Algorithm

- Logistic regression
- Naive Bayes
- Support vector machines
- Random forest
- Boosting

Supervised Modeling Process

- Have historical email data with spam/not spam labels
- Preprocess the email text data
 - Tokenize
 - Remove stop words
 - Stem or lemmatize
 - Count vectorize
- Use this numerical dataset in a classification algorithm
- Given a new email, process the same way and predict

Practice Machine Learning

Walkthrough

03_Classification_Walkthrough

04_Text_Classification_Exercises

Beyond Count Vectorizer

Problems with binary values or word count:

- Binary counts can be too simplistic
- High counts can dominate--especially for high frequency
 words or long documents
- Each word is treated equally--some terms might be more important than others

Want a metric that accounts for these issues

Term Frequency (TF)

- Alternative to binary values or counting word appearance
- Balance count with a transformation:

 $tf = \log(x+1)$

x = term occurrence

Inverse Document Frequency (IDF)

- Also want to increase weight of words appearing in only a few documents
- Calculate inverse document frequency:

 $idf = \log(\frac{D+1}{d+1})$

D = total documentsd = documents containing word

Practice TF-IDF

- Complete question 4 from the previous exercises (04_Text_Classification_Exercises)
- We will discuss the syntax briefly within the exercise

Keep merging pairs and clusters

Keep merging pairs and clusters

When to Stop Clustering?

Correct number of clusters is reached

Cluster linkage (distance) reaches a set value

Single: minimum pairwise distance between clusters

Income

Single: minimum pairwise distance between clusters

Income

Average: average pairwise distance between clusters

Income

Average: average pairwise distance between clusters

Income Age

Ward: merge based on cluster density (inertia)

Distance Metrics

- Clustering requires measuring distance between observations
- Choice of distance metric is extremely important to clustering success

Age

Cosine Distance

Cosine Distance

Age

Distance Metrics for Text

Distance Metrics for Text

Practice Clustering

05_Hierarchical_Clustering_Walkthrough

06_Hierarchical_Clustering_Exercises

Topic Modeling

\equiv sections Q search	FNGLISH 中文 (CHINESE) ESPAÑOL	SUBSCRIBE NOW LOG IN
Truth. It comes at a cost.	The New York Times	Get up to 40% off the Times subscription
	Friday, January 20, 2017 🗐 Today's Paper 📔 🕶 Video 🗌 🏠 45°F 🛛 Dow +0.23% †	or your choice.
World U.S. Politics	N.Y. Business Opinion Tech Science Health Sports Arts Style Food Travel Magazin	e T Magazine Real Estate ALL

- Goal: Discover topics in a large collection of documents
- For example, articles arranged by topic on a news site

Document Structure

\equiv sections Q search		SUBSCRIBE NOW	LOG IN 🔅	
	ENGLISH 中文 (CHINESE) ESPAÑOL			
Truth. It comes at a cost.	The New York Times	Get up to the Times	Get up to 40% off the Times subscription	
	Friday, January 20, 2017 🔳 Today's Paper 🕴 ■4 Video 🧧 🏠 45°F 🗌 Dow +0.23% †		loice.	
World U.S. Politics	N.Y. Business Opinion Tech Science Health Sports Arts Style Food Travel Magazine	T Magazine Real Esta	ate ALL	

- Assume a document is a distribution of topics
- An article can be 30% business, 30% tech, 40% science

Topic Structure

- Assume a topic is a distribution over words
- Topic 1 is about sports so it uses "game" and "team" frequently
- Topic 2 can also use the words "team" or "game" but less frequently than topic 1

Topic 1		Topic 2		Topic 3	
term	weight	term	weight	term	weight
game	0.014	space	0.021	drive	0.021
team	0.011	nasa	0.006	card	0.015
hockey	0.009	earth	0.006	system	0.013
play	0.008	henry	0.005	scsi	0.012
games	0.007	launch	0.004	hard	0.011

The Goal

gene dna

. . .

life

...

data

. . .

Topic proportions and Topics Documents assignments 0.04 0.02 Seeking Life's Bare (Genetic) Necessities genetic 0.01 COLD SPRING HARBOR, NEW YORK- "are not all that far apart," especially in How many genes does an organism need to comparison to the 75,000 genes survive? Last week at the genome meeting man genome, notes Siv Andersso in the h non genome, notes Siv Anders here,8 two genome researchers with radically University in rived different approaches presented complemen-tary views of the basic genes needed for life. ut coming up with sus answer may be more than just 0.02 One research team, using computer analynumbers same evolve 0.01 ses to compare known genomes, concluded more gen es are com organism 0.01 that today's organisms can be sustained with sequenced. "It may be a way of organ just 250 genes, and that the earliest life forms any newly sequenced genome," explains required a mere 128 genes. The Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) other researcher mapped genes in a simple parasite and esti-Haemophilus mated that for this organism, in Bethesda, Maryland, Comparing genome 1703 gares 800 genes are plenty to do the brain 0.04 job-but that anything short neuron 0.02 of 100 wouldn't be enough. 0.01 Although the numbers don't nerve match precisely, those predictions Mysoplaam genome 460 cares * Genome Mapping and Sequencing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-May 8 to 12. mate of the minimum modern and ancient genomes. 0.02 SCIENCE . VOL. 272 . 24 MAY 1996 0.02 number computer 0.01

- Find document topic distribution
- Based on topic word distribution

Latent Dirichlet Allocation (LDA)

- Generative model: models how the data is generated
- Assume a set of topics shared by all documents
- To create a document:
 - Generate a topic from the document topic distribution
 - Generate a word from that topic
- Repeat

How is LDA Used?

- Assume a set of documents were generated in this way
- Reverse the generative process to understand topics in a given document
- We won't go into the math
- Let's practice in Python

Practice Topic Modeling

- We will complete the first part of 07_LDA_Walkthrough_and_Exercises together
- Then answer the remaining questions

Deep Learning with Text

• **Problem:** taxonomy count increases dramatically with document size

 Solution: use a neural network to create a numerical representation (vector) for each word

Word Embeddings with Word2Vec

 Word vectors can be used to understand relationships between words

• For example:

man --> woman king --> queen

How Can We Use Word2Vec?

 Vectors can be combined to create features for documents

• Neural network requires large training set

Practice Word2Vec

- We will complete the first part of 08_Word2Vec_Walkthrough_and_Exercises together
- Then answer the remaining questions

Thank You

Contacting me:

- michelle@thisismetis.com
- @modernscientist
- michellelynngill.com
- linkedin.com/in/michellelynngill
- github.com/mlgill

Contacting Metis:

- @thisismetis
- thisismetis.com

