Efficient Image Search and Identification: The Making of WINE-O.AI

Michelle L. Gill, Ph.D. Senior Data Scientist, Metis @modernscientist SciPy 2017 <u>link.mlgill.co/scipy2017</u>

Metis Data Science Training

- Data Science Bootcamp
 - 12 Week, In-Person
 - New York, San Francisco, Chicago, Seattle
- Corporate Training
 - Python for Data Science
 - Machine Learning
 - Natural Language Processing
 - Spark
- Evening Professional Development Courses
- Explore Data Science Online Training

thisismetis.com

Motivation for WINE-O.AI

- Facilitate discovery and exploration of new wine
- Open source, computer vision project to share with the community

Ingredients of WINE-O.AI

Content Based Image Retrieval

Image Comparison Challenges

Query Image

Database Image

- Must be robust to differences in size, rotation, occlusion, and illumination
- And search must remain fast!

Content Based Image Retrieval in WINE-O.AI

SIFT Feature Detection

Gaussian Width (σ)

- Scale Invariant Feature Transformation (SIFT)
- Blur images using a Gaussian function of increasing width (σ)

- Align images in 3D scale-space (x, y, σ)
- Subtract adjacent images

- Align images in 3D scale-space (x, y, σ)
- Subtract adjacent images
- Local extrema evaluated as potential features

SIFT Feature Descriptor

SIFT Feature Descriptor

- Descriptor calculated in 16 regions around key point
- Changes in intensity calculated and binned

SIFT Feature Descriptor

- Descriptor calculated in 16 regions around key point
- Changes in intensity calculated and binned
- Produces 128 dimension descriptor for each key point

SIFT in Practice

Arandjelovic, R. and Zisserman, A., IEEE CCVPR, 2012 <u>PyImageSearch RootSIFT Discussion</u> OpenCV2 code has been streamlined for presentation

Detection of Wine Label Features

- Image sizes: 100 x 100 to 1000 x 1200
- Features from high resolution images did not encode well

Wine Label Recognition: Bag of Visual Words

Bag of Visual Words

- K-means clustering on combined features from data set
- Map features for each label to nearest cluster
- Creates a histogram
 "fingerprint" for each label

Bag of Visual Words

Bag of Visual Words

Wine Label Selection

Image Retrieval with RANSAC

 Random sample consensus (RANSAC) used to choose best candidate image

Image Retrieval with RANSAC

- Random sample consensus (RANSAC) used to choose best candidate image
- Random subsets of data fit to model

Running RANSAC

OpenCV2 code has been streamlined for presentation

Putting It All Together

Run SIFT & calculate histogram on query image keypointsA, featuresA = run_SIFT(image) histogramA = map_features_to_clusters(featuresA)

Get candidate images with similar histograms
candidate_images = get_similar_images(histogramA)

for cimage in candidate_images:

Load keypointsB, featuresB for cimage

Matched image has best score

Calculate Histogram from SIFT Features

Identify Candidate Images

Use RANSAC to Choose Image Match

OpenCV2 code has been streamlined for presentation

WINE-O.Al Demonstration

Candidate Image

Database Image

WINE-O.AI Demonstration

Future of WINE-O.AI

- Open source wine application
- Educational use
- GitHub repo: <u>mlgill/wine-o.ai</u>
- Website: <u>wine-o.ai</u>

Thank You

michelle@thisismetis.com

- @modernscientist
- themodernscientist
- <u>mlgill</u>