From Structural Biology to AI: a Holistic Approach to Studying Molecular Machines Michelle Gill, PhD NVIDIA Professional Services

NVIDIA Professional Services

Our goal is to *enable* broader customer *adoption* of *Deep Learning* on *NVIDIA-accelerated* platforms

From Scientist to Data Scientist

(and Sometimes Both)

Solution NMR Applications & Methods Development

Compressed Sensing & Molecular Dynamics

Data Science & Deep Learning

Deep Learning in Materials Science & Pharma

DeepChem Committer (Early Days)

Graduate & Postdoctoral Research

Staff Scientist at NCI

Data Scientist

Enzymes are Molecular Machines

Enzymes are nature's machines

Found throughout an organism

Perform the chemical reactions that make life possible

Malfunction of enzymes can contribute to disease states

Molecular Dynamics Control Substrate Recognition

GCN4 is an enzyme that belongs to the transcription factor family

Binds to substrate (DNA) leading to expression of the nearby gene

Binding event requires motion of the enzyme – dynamics

Molecular Dynamics Control Substrate Recognition

Order Parameters (S²) from Solution NMR

Gill, M.L., Byrd, R.A., Palmer, A.G. "Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region", *Phys. Chem. Chem. Phys.*, 2016, 18, 5839-5849.

Robustelli, P., Trbovic, N. Friesner, R.A., Palmer, A.G. "Conformational dynamics of the partially disordered yeast transcription factor GCN4", *J. Chem Theory Comput.*, 2013, 9, 5190-5200.

Molecular Dynamics Control Substrate Recognition

Over 30% of mammalian genome predicted to have regions of intrinsic disorder

Genes containing disordered regions associated with fundamental cellular processes (and cancer)

Disorder difficult to study with traditional structural biology methods

Enzyme Structure and Dynamics are Key for Therapeutic Discovery

Many successful therapeutics (drugs) bind in place of substrates

Understanding enzyme dynamics critical for substrate binding and development of therapeutics

Deep learning excels at recognition of complex patterns

Potential for AI-assisted drug discovery

Challenges Unique to Deep Learning With Chemistry

Limited availability of scientific data

Exploration of large chemical space

Representing chemical features

Limited Availability of Scientific Data

General Topics

Text, image, and sound data are readily available on internet

Limited Availability of Scientific Data

General Topics

Text, image, and sound data are readily available on internet

Chemistry Specific

Access to scientific data limited difficult to acquire, not shared publicly

Exploration of Large Chemical Space

<section-header>

ImageNet classification uses 1000 categories (10³ magnitude)

Exploration of Large Chemical Space

General Topics

ImageNet classification uses 1000 categories (10³ magnitude)

Chemistry Specific

Molecule space encompasses 10⁶⁰ - 10³⁰⁰ possibilities (10⁸ synthesized)

Two-dimensional convolutional filters learn image features

Two-dimensional convolutional filters learn image features

Chemistry Specific

Representations can be one-, two-, and three-dimensional (or combination)

Two-dimensional convolutional filters learn image features

Chemistry Specific

Representations can be one-, two-, and three-dimensional (or combination)

Two-dimensional convolutional filters learn image features

Chemistry Specific

three-dimensional (or combination)

Deep Learning with Chemistry

Predicting enzyme-ligand binding using threedimensional atomic convolutional networks

Generation of drug-like molecules using continuous latent spaces

(Bio)Chemistry Data for Deep Learning

Public and proprietary data are a useful combination — for transfer learning and as supplement

Utilized MoleculeNet — benchmark datasets for chemistry, biophysics, and physiology

Part of DeepChem deep learning library

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., Pande, V. "MoleculeNet: A Benchmark for Molecular Machine Learning." arXiv.org, 2017.

(Bio)Chemistry Data for Deep Learning

PDBbind – 12K published measurements and 3D structures of enzyme-ligand complexes

ZINC12 – 35M chemicals and properties for drug discovery

Ligand Binding Featurization and Modeling

Utilizes a three-dimensional "atomic fingerprint"

Atom type (element) and distance calculated within threshold and pooled

Atom Type + Distance

Featurization based on: Gomes, J., Ramsundar, B., Feinberg, E. N., & Pande, V. S. "Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity.", *arXiv*, 2017.

Ligand Binding Featurization and Modeling

Utilizes a three-dimensional "atomic fingerprint"

Atom type (element) and distance calculated within threshold and pooled

Three interlinked neural networks emphasize changes introduced by ligand binding

Predicting Ligand Affinity

Compared binding predictions with Random Forest and DNN regression models

R² indicates DNN performs slightly better than Random Forest

DNN performance expected to improve with more data

Predicting only successful ligand binding events (challenge)

Visualizing Enzyme-Ligand Binding

Tightest Binding Ligand

Weakest Binding Ligand

Opposite Protein-Ligand Charges Attract (+/-)

Deep Learning with Chemistry

Predicting enzyme-ligand binding using threedimensional atomic convolutional networks

Generation of drug-like molecules using continuous latent spaces

Featurizing Chemicals for Deep Learning

Chemicals first converted to SMILES strings

SMILES characters used to create onehot encoded vectors

Vectors used as features for neural network

Character-level encodings don't always capture inherent rules of chemistry

Deep Learning Assisted Chemical Design

Network based on: Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Augilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A. "Automatic chemical design using a data-driven continuous representation of molecules." ACS Cent. Sci., 2018. 28 © NVIDIA.

Exploring Chemical Space

Generating Novel Chemicals with Deep learning

Chemical Input

Encoder Neural Network Continuous Molecular Representation

Generating Novel Chemicals with Deep learning

Chemical Input

Encoder Neural Network

Continuous Molecular Representation

Decoder Neural Network Novel Chemical Output

Chemical Properties in Molecular Space

Conclusions

Artificial intelligence provides a nascent but powerful toolkit for accelerating chemistry-focused innovation

Combining deep learning with experimental and simulation data further accelerates this iterative process

Tomorrow's basic and applied science breakthroughs will blend AI and traditional methodologies

