

# Exploring Molecular Space and Accelerating Drug Discovery on the GPU with Clara Discovery

Michelle L. Gill, Ph.D. Senior AI Scientist and Tech Lead, Clara Discovery Gates Foundation Grand Challenges: *Applications of Artificial Intelligence in Machine Learning for Drug Discovery* November 10, 2021

### Overview

**Overview of Clara Discovery** 

Interactive, accelerated machine learning and visualization

MegaMolBART architecture

Data augmentation and model pretraining

Impact of pretraining on downstream tasks



# **NVIDIA Clara Discovery**





# Motivation: Three Years for Design-Make-Test-Analyze Cycle



Multiple of DMTA cycles at 4-6 weeks/cycle Transition between multiple labs



### **Candidate Drug**

Highly potent Effective for *in vivo* models Metabolically stable No toxicity issues



# Interactive Clustering and Visualization

### Workflow



Real-time, GPU-enabled clustering and visualization of clustering workflows

### Interface

# **plotly** Dash

### MegaMolBART Architecture

MegaMolBART is a transformer-based model for small molecule drug discovery

MegaMolBART is based on a BART (seq2seq) transformer -- bidirectional encoder and autoregressive decoder

Developed in collaboration with AstraZeneca

Built on NVIDIA's Megatron framework to enable training and inference at scale





Encoder

Nx

Ross, I., Spyridon, D., Jiazhen, H. & Esben, B. Chemformer: A Pre-Trained Transformer for Computational Chemistry. ChemRxiv (2021) doi:10.33774/chemrxiv-2021-v2pnn.

📀 NVIDIA.

### Natural Language Processing for Deep Learning in Cheminformatics



### COc1ccc2n c(S (=O) Cc3ncc(C) c(OC)c3C) [nH]c2c

SMILES enable small molecules to be represented as text Leverage deep learning advancements in natural language processing



# Data Augmentation for SMILES Based Deep Learning



### SMILES enumeration and masking improve molecular embeddings

Bjerrum, E. J. & Sattarov, B. Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders. Biomol 8, 131 (2018).

8

### Pre-Training of MegaMolBART at Scale



Pre-training performed on ZINC15 -- tranche from reactive, annotated molecules with molecular weight  $\leq$  500Da, and LogP  $\leq$  5

Trained on DGX SuperPOD -- 4-8 nodes x 8 A100 GPUs

AstraZeneca concurrently developing on Cambridge-1

| S | Hidden<br>Size | Feed<br>Forward | Parameters |
|---|----------------|-----------------|------------|
| 4 | 256            | 1024            | 10M        |
| 6 | 512            | 2048            | 45M        |
| 8 | 1024           | 4096            | 230M       |



## MegaMolBART Downstream Predictive Tasks



Reaction prediction and molecular optimization utilize encoder and decoder Molecular property prediction from decoder embeddings De novo molecular design based on decoder





### Pre-Training Increases Performance for Retrosynthesis Prediction



**SOTA:** Tetko, Igor V., et al. "State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis." Nature communications 11.1 (2020): 1-11. **Random:** Randomly initialized weights.

\* Tetko, Igor V., et al. "State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis." Nature communications 11.1 (2020): 1-11.
‡ He, J. et al. Molecular optimization by capturing chemist's intuition using deep neural networks. J Cheminformatics 13, 26 (2021).

### Pre-trained model outperforms SOTA in fewer than 20 epochs (<30 min) Based on top-1 molecular accuracy for retrosynthesis prediction

Ross, I., Spyridon, D., Jiazhen, H. & Esben, B. Chemformer: A Pre-Trained Transformer for Computational Chemistry. ChemRxiv (2021) doi:10.33774/chemrxiv-2021-v2pnn. 11

| ard<br>on (%) | Retrosynthesis<br>(%) | Molecular<br>Optimization (%) |
|---------------|-----------------------|-------------------------------|
| 1             | 50.8                  | 69.5                          |
| 2             | 52.1                  | 72.1                          |
| 1             | 51.8                  | 71.2                          |
| 8             | 53.6                  | 69.7                          |
| *             | 48.3*                 | <b>66.6</b> %.‡               |



### What's Next?





Scaling MegaMolBART -- what are the limits to larger models?

Implement and test downstream tasks in MegaMolBART

Improve de novo molecule generation -development of novel model architectures

Automation of data processing, pre-training and downstream tasks

### Latent Space (Embedding) Sampling



### Conclusions

Clara Discovery is a collection of tools and frameworks that accelerate drug discovery

The interactive explorer provides a framework for visualizing and customizing workflows

MegaMolBART is a seq2seq transformer pre-trained at scale using augmented SMILES

Pre-training produces SOTA performance on downstream tasks

All tools are open source and freely available

### Where to Get It: Clara Discovery Release V0.1.4

Resource MegaMolBART Weights Featurizer Service Interactive Explorer Tutorials

https://ngc.nvidia.com/models/nvidia:clara:megamolbart https://ngc.nvidia.com/containers/nvidia:clara:megamolbart https://github.com/NVIDIA/cheminformatics

- https://ngc.nvidia.com/catalog/resources/nvidia:clara:cheminformatics
- https://ngc.nvidia.com/containers/nvidia:clara:cheminformatics\_demo

### Acknowledgements



AstraZenec

Ross Irwin

Abe Stern, PhD Rajesh Ilango Venkatesh Mysore, PhD Johnny Israeli, PhD Rob Brisk, MRCP, PhD Hassan Sirelkhatim Myriem Demouth



- Esben Jannik Bjerrum, PhD
- Jiazhen He, PhD
- Spyridon Dimitriadis
- Ola Engkvist, PhD





