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ABSTRACT: The present work demonstrates that NMR spin relaxation rate constants
for molecules interconverting between states with different diffusion tensors can be
modeled theoretically by combining orientational correlation functions for exchanging
spherical molecules with locally isotropic approximations for the diffusion anisotropic
tensors. The resulting expressions are validated by comparison with correlation functions
obtained by Monte Carlo simulations and are accurate for moderate degrees of diffusion
anisotropy typically encountered in investigations of globular proteins. The results are
complementary to an elegant, but more complex, formalism that is accurate for all
degrees of diffusion anisotropy [ Ryabov, Y.; Clore, G. M.; Schwieters, C. D. J. Chem.
Phys. 2012, 136, 034108].

■ INTRODUCTION

Nuclear magnetic spin relaxation is a consequence of chemical
or conformational dynamics of molecules in solution.1 Over
the past 2 decades, 2H, 13C, and 15N spins have been widely
employed as probes in NMR spectroscopic studies of proteins
and nucleic acids. In well-folded, compact molecules, conforma-
tional dynamics on picosecond−nanosecond time scales
comparable to or faster than overall rotational diffusion in
solution generally have been analyzed assuming a single overall
rotational diffusion tensor.2,3 These techniques, for example,
have been applied to 15N spin relaxation of backbone amide
groups in hundreds of globular proteins.4 In the simplest
approach, intramolecular motions are regarded as statistically
independent or time scale separated from overall motion,
leading to the model-free5,6 or two-step7 formalisms, res-
pectively. The simplest form of the model-free formalism
describes the orientational correlation function as

τ = + −τ τ τ τ− −C S S( ) e [ (1 )e ]/ 2 2 /m e (1)

in which τm = 1/(6Diso) is the rotational correlation time for a
spherical molecule with isotropic diffusion constant Diso and S2

and τe are the generalized order parameter and effective internal
correlation time, respectively, for internal motions. Extensions
to this model include axial or asymmetric diffusion tensors5−8

and internal motions on two time scales.9 Approaches in which
internal and overall motions are coupled also have been
described,10 but even in these approaches a single well-defined
overall rotational diffusion tensor usually is posited11,12 or
additional experimental and computational methods allowing
separation of these motions is required.13,14 These highly
successful approaches break down in two limits: (i) unfolded or
intrinsically disordered molecules, in which any separation between
intramolecular and overall motions is fraught, or (ii) molecular
systems whose diffusion tensors are time dependent, owing to
conformational changes or folding, oligomerization, or complex

formation. A two-domain protein in which the domains are
separated by a linker of varying rigidity is a prototypical example in
which internal motions that alter the relative orientation of the
domains thereby modify the overall rotational diffusion tensor of
the molecule. Tjandra and co-workers have used the “extended”
two-time-scale model-free formalism to characterize interdomain
motions in two-domain proteins, such as calmodulin, while
preserving the concept of a single overall diffusion tensor.15−17

The complications posed by time-dependent diffusion
tensors have been addressed directly by two research groups.
Wong and co-workers described a rigorous treatment for the
case of interconversion between two or more isotropic diffusion
tensors with different diffusion constants and orientations of
spin Hamiltonians and extended this approach to axially
symmetric tensors under the special condition that the
symmetry axes of the tensors are coincident.18 More recently,
Ryabov and co-workers derived an elegant analytical solution
for the orientational correlation function for interconverting
states with arbitrary diffusion tensors as an expansion in the
eigenfunctions of the fully asymmetric diffusion operator.19

The isotropic system analyzed by Wong and co-workers is
analytically tractable, but too restrictive to apply to realistic
situations, whereas the results of Ryabov and co-workers are
sufficiently complex as to hinder analytical insight.
The main purpose of the present work is to demonstrate that

the approach of Wong and co-workers can be extended to more
general cases with arbitrary diffusion tensors by incorporat-
ing the locally isotropic quadric diffusion approximation of
Brüschweiler and co-workers,20 provided that the relevant
diffusion tensors are not highly anisotropic. The results provide
a simplified analytically tractable approximation to the general
solution of Ryabov and co-workers.
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■ THEORY

Evolution of the density operator in the interaction frame is
described by21
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The stochastic Hamiltonian for an N-site jump process is22

∑ ∑ω= − +
= =

t I f t p f t t( ) [ ( ) ] ( ) ( )z
j

N

j j j
j

N

j1
1

0
1

1 1
(3)

in which f j(t) is unity if the molecule is in conformation j at
time t and zero otherwise, pj = ⟨f j(t)⟩ is the equilibrium
population of the jth conformation, ω0j is the Larmor frequency
for the spin of interest in the jth conformation, and t( )j1 is
the Hamiltonian for other stochastic processes, such as the
fluctuating dipolar interaction, that contribute to relaxation in
the jth conformation. Transforming eq 3 into the interaction
frame and substituting into eq 2 gives
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The first term on the right-hand side of this equation
represents relaxation due to chemical exchange broadening; this
classical relaxation mechanism has been treated in this
formalism by Abergel and Palmer22 and is not treated further
herein. However, this term makes evident that application of
the Redfield formalism in the present case requires that the
N-site jump processes are fast on the chemical shift time
scale; this implies that only a single population-averaged
resonance line is observed in the NMR spectrum. However,
the jump process may be slow (or fast) on the time scale of
the stochastic Hamiltonians t( )j1 , which typically will vary on
the rotational diffusion time scale. If this time-scale restriction
is not satisfied, then the full stochastic Liouville approach
becomes necessary.22

If the N-site jump processes are time-scale separated from
the stochastic processes t( )j1 , then
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in which the stochastic correlation function for the jump
process is ⟨f j(t) f j′(t−τ)⟩. If the jump processes are fast
compared to the other stochastic processes, then the long-time
value is reached on a time scale that is short compared to the
stochastic processes, t( )j1 :

τ⟨ − ⟩ →′ ′f t f t p p( ) ( )j j j j (6)

Making this substitution recovers the general fast-limit result:
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is the population-average stochastic Hamiltonian. If the jump
process is slow compared to the other stochastic processes,
then

τ⟨ − ⟩ →′ ′f t f r p p( ) ( )j j j jj (9)

Making this substitution recovers the general slow-limit result:
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In the fast limit, the stochastic Hamiltonian is averaged,
and the resulting relaxation rate constant is determined by
the stochastic fluctuations of the averaged Hamiltonian. In
the slow limit, the correlation functions (equivalently, the
spectral density functions or relaxation rate constants) are
averaged. In the above limits, no additional assumptions need
to be made about the stochastic processes; that is, rotational
diffusion can be quite general and internal motions can be
present.
Between these two limits, the analysis proceeds as usual by

expanding the stochastic Hamiltonians in irreducible tensor
operators:21
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which yields upon substitution into eq 4
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In the simplest case, F2j
q (t) = cjY2

q[Ωj(t)], in which cj is a
(assumed constant) function of physical parameters associated
with the stochastic Hamiltonian, and the correlation function
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is calculated by using

∫ ∫τ τ= Ω Ω′ Ω Ω′ Ω′ Ω Ω′
−

′C Y Y p p( ) d d ( ) ( ) ( , ; , 0) ( , 0)jj
q q q

jj j2 2

(14)

in which pj(Ω,0) is the probability that the molecule is in
conformation j with orientation Ω at time 0 and pjj′(Ω′,τ;Ω,0)
is the conditional probability that the molecule is in
conformation j′, with orientation Ω′ at time τ; given that it
was in conformation j with orientation Ω at time 0. In isotropic
solution Cjj′

q (τ) = (−1)qCjj′(τ), therefore, only the correlation
function Cjj′

0 (τ) = Cjj′(τ) needs to be calculated:

∫ ∫τ τ= Ω Ω′ Ω Ω′ Ω′ Ω Ω′ ′C Y Y p p( ) d d ( ) ( ) ( , ; , 0) ( , 0)jj jj j2
0

2
0

(15)

Methods for calculating this correlation function have been
presented by Wong and co-workers18 and Ryabov and co-
workers.19

In the simplest illustrative case, previously analyzed by Wong
and co-workers,18 the molecule undergoes jumps between N
rigid conformations with isotropic diffusion tensors Dj, The
stochastic Hamiltonians also are assumed to have axial
symmetry, and the orientations of the unique axes are defined
by unit vectors μj, for j = 1, N. In the case of dipole−dipole
relaxation between two covalently bonded atoms, the unit
vectors are oriented along the bond. Using the transformation
properties of the irreducible spherical tensors:
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2

2
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in which ΩBF are the Euler angles defining the transformation
from an internal body frame (superimposed on the frame of
conformation j) to the laboratory reference frame for the
conformation j′ and Ωjj′ are the spherical coordinates of μj′ in
the internal frame (without loss of generality this frame can be
oriented with its z-axis parallel to μj). Noting that pjj′(Ω,0;Ω0,0)
= δjj′δ(Ω − Ω0) yields pjj′(Ω,t;Ω0,0) = δ(Ω − Ω0)ajj′(Ω,t;Ω0,0)
and the conditional probabilities are determined from18
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in which kjj′ is the rate constant for transitions from state j to j′,
kjj = −Σj≠j′ Kjj′ and ajj′(Ω,0;Ω0,0) = δjj′. Substituting these
results into eq 15 and performing the integrals gives

μ μτ τ= · Ω Ω Ω′ ′ ′C Y a p( ) ( ) ( , ; , 0) ( , 0)jj j j jj j2
0 BF

(18)

This result, together with the identity Cjj′
q (τ) = (−1)qCjj′(τ), is

substituted into eq 13 to complete the derivation of the
correlation function needed in the expression for the time
dependence of the density operator, eq 12.
For N = 2 states, denoted A and B, with diffusion constants

DA and DB, interaction vectors μA and μB, and assuming cA = cB,
Wong and co-workers showed that the orientational correla-
tion function has the form of the model-free correlation
function:18
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kex = k1 + k2, k1 and k2 are the rate constants for transitions
from state A to B, and from state B to A, respectively.
When kex ≫ (DA − DB),
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in which the expression for S2 is the usual generalized order
parameter for a two-site jump process, D̅ is the population-
average diffusion constant, and pA = k2/kex and pB = k1/kex are
the equilibrium populations of the two states. The correlation
function becomes

μ μτ = = − ·τ τ− ̅ − ̅C S p p( ) e [1 3 sin ( )]eD D2 6
A B

2
A B

6
(22)

Consistent with the earlier fast-limit result, eq 22 is the
correlation function for the population average of the two
stochastic Hamiltonians. This limit is essentially equivalent to
the extended model-free formalism used by Tjandra and co-
workers to characterize interdomain motion,15 except that the
scalar product between μA and μB incorporates both reorienta-
tion of the domains and reorientation of the equilibrium
orientations of the interaction vectors within the two domains.
When kex ≪ (DA − DB),

≈ − + − ≈ −
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The correlation function becomes

τ = +τ τ− −C p p( ) e eD D
A

6
B

6A B
(24)

Consistent with the earlier slow-limit result, eq 24 is the
population average of the individual correlation functions for
the two stochastic Hamiltonians. Because nuclear spin
relaxation rate constants depend linearly on the spectral density
function, which in turn is the Fourier transform of C(τ), the
relaxation rate constants themselves become the population-
weighted averages of the rate constants for each state.
As noted by Wong and co-workers, more general cases in

which the diffusion tensors of the interconverting conforma-
tions are not isotropic are much more complex.18 However, in
many cases of interest, the degree of anisotropy of the diffusion
tensor is relatively modest. In these cases, Brüschweiler and
co-workers have shown that anisotropic rotational diffusion can
be treated with an effective locally isotropic diffusion tensor
given by20

̃ =D e QeT (25)

in which e are the directions cosines defining the orientation of
μ in the principal frame of the diffusion tensor, Q is diagonal
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with elements Qxx = (Dyy + Dzz)/2, Qyy = (Dxx + Dzz)/2, and
Qzz = (Dxx + Dyy)/2, and Dii are the principal values of the
diffusion tensor. For an axially symmetric diffusion tensor,
Dxx = Dyy = D⊥ and Dzz = D∥, and errors in D∥/D⊥ and (D∥ +
2D⊥)/3 obtained from this approximation are less than 10% for
0.65 ≤ D∥/D⊥ ≤ 1.75.23

When the approximation of eq 25 applies, the general
situation can be treated as jumps among N conformations with
N local isotropic diffusion constants D̃j and N(N − 1)/2

intervector angles, given by μj·μj′, between axially symmetric
stochastic Hamiltonians using eqs 17 and 18. For two-site (N = 2)
exchange, the results are given by eqs 19 and 20, with DA and
DB replaced by D̃A and D̃B, respectively. This simplification of
the general problem, depicted in Figure 1, to an approximately
isotropic one is a main result of this work.
For completeness, although not utilized herein, fast internal

motions that are statistically independent of overall diffusional
and jump motions, such as librations of a given bond vector,
can be incorporated into the correlation function by defining a
total correlation function:5,6

= + − τ−G t C t S S( ) ( ){ (1 )e }t
f
2

f
2 / f (26)

in which Sf
2 and τf are the square of the generalized order

parameter and effective internal correlation time for the fast
intramolecular motion, respectively.
Recently, considerable interest has arisen in detecting con-

formational changes in proteins and RNA molecules on time
scales longer than rotational diffusion and shorter than the time
scale for chemical exchange broadening.24,25 This time scale is the
preceding slow-limit result, in which the relaxation rate constants
(or spectral density or correlation functions) are averaged. For
heteronuclear spin relaxation of H−X spin pairs (X = 15N or 13C),

τ
τ

τ ω
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̃
+ ̃
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R R R( 0.5 )/
2
3 1mj

mj

mj X
2 1 1 2 2
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Figure 2. Comparison with simulations for different diffusion tensors. The plots show the correlation functions C(τ) for (thin, black lines) the
simulation and (thick, orange lines) calculations from eqs 19, 20, and 25, (long dashed, reddish-purple lines) for the A diffusion tensor alone, and
(short dashed, bluish-green lines) for the B diffusion tensor alone. Diffusion tensor B was varied as (a) DxxΔt = 2 × 10−4, DyyΔt = 4 × 10−4, and
DzzΔt = 1.3 × 10−3, (b) DxxΔt = 6 × 10−4, DyyΔt = 3 × 10−4, and DzzΔt = 1 × 10−3, (c) DxxΔt = DyyΔt = DzzΔt = 6.3 × 10−4, and (d) DxxΔt = 1 ×
10−3, DyyΔt = 6 × 10−4, and DzzΔt = 3 × 10−4. The values of k1Δt = 0.5 × 10−2 and k2Δt = 1.5 × 10−2. Other parameters are given in Methods.

Figure 1. Schematic of dynamic parameters for an enzyme undergoing
conformational exchange. The two conformations, denoted “A” and
“B”, have equilibrium populations pA and pB, respectively. A
representative amide bond is depicted in both conformations. The
effective internal correlation time is τf and the square of the generalized
order parameter is Sf

2 for fast intramolecular motions of the amide
bond. The amide bond is shown superimposed on the enzyme diffusion
axes (gray), denoted Dxxj, Dyyj, and Dzzj, where j indicates either state A
or B. The rate constant for transitions from open to closed
conformations is k1, while the reverse rate constant is k2.
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in which τm̃j = 1/(6D̃j) and local fast motions have been assumed
to be similar in the different conformations. When τm̃j

2 ωX
2 ≫ 1,

ω τ
τ

− ≈ ⟨ ̃ ⟩
̃

−

R R R( 0.5 )/
2
3

1
X mj

mj
2 1 1

2

1

(28)

showing that relaxation rate constants depend upon the mean
diffusion time and mean diffusion rate.

■ METHODS
Parameters for N = 2 site exchange between molecular con-
formations with distinct diffusion tensors are depicted in
Figure 1. Orientational correlation functions C(τ) = P2[μ(τ)·μ(0)],
in which μ(τ) is a unit vector along the symmetry axis of the
stochastic Hamiltonian, such as the N−H amide bond in a
protein, were calculated by Monte Carlo simulations. Final
correlation functions are the average of 25 individual simulations
of 50,000 time steps. At each time step in a single simulation,
the molecule is rotated around the x-, y-, and z-axes by angles
chosen randomly from a Gaussian distribution with standard
deviation (2Dηη)

1/2 for the current conformation, in which
η = {x, y, z}. After each diffusive step, the conformation of the
molecule is switched between states if a random number drawn
between 0 and 1 is greater than pj + pj′ exp[−(k1 + k2) Δt], in
which the molecule currently has the jth conformation. This
protocol accurately reproduces the correlation functions for the
individual diffusion tensors in the absence of kinetic exchange
between conformations, and for the jump process in the absence
of rotational diffusion (not shown). Model correlation functions
were calculated using eqs 19, 20, and 25.
Initial simulations and calculations were performed with

the following parameters. The spherical coordinates of the
interaction unit vector in the A and B diffusion tensor frames
were (72°, 37°) and (24°, 17°), respectively, and the Euler angles
relating the two diffusion tensor frames were (27°, 78°, 17°),
using the zyz convention. These values were chosen to be
identical to those values used by Ryabov and co-workers in
their Figure S1.19 The diffusion tensor for state A was fixed
with principal values DxxΔt = 3 × 10−4, DyyΔt = 6 × 10−4, and
DzzΔt = 1 × 10−3, in which Δt is the (arbitrary) time step for
the simulations. Simulations were performed either by varying
the diffusion tensor for the B state, while fixing the rate constants
k1 and k2, or by fixing the diffusion tensor for the B state and
varying k1 and k2. The average (Dxx + Dyy + Dzz)/3 = 6.33 ×
10−4 was equal for the A and B tensors in all cases. Additional
details are given in the figure captions.
The structures of enzyme I in open and closed conformations

were derived from PDB files 2L5H and 2HWG, respectively.
The rotational diffusion tensors were calculated using
HydroPro26 with subsequent calculations performed using
python.27−29 The principal values of the diffusion tensor were
calculated as Dxx = 1.16 × 106 s−1, Dyy = 1.17 × 106 s−1, and
Dzz = 2.50 × 106 s−1 for the open conformation. The principal
axes are oriented with Euler angles (353.9°, 135.7°, 264.6°),
relative to the frame of 2L5H. The closed conformation has a
nearly isotropic diffusion tensor and for simplicity was treated as
an isotropic sphere with an average diffusion constant of 2.46 ×
106 s−1. The two conformations were oriented by superposing
the core domains, residues 270−573. After superposition of the
core domains, the two diffusion frames were assumed to have
the same orientation. Calculations assumed relative populations
of 0.95 and 0.05 for open and closed conformations, res-
pectively. Correlation functions were simulated for the N−H

bond vectors of residues Leu 123, Val 246, and Arg 460. The
spherical coordinates (θ, ϕ) of the interaction unit vector in the
A (2L5H chain A, open) and B (2HWG chain A, closed)
diffusion tensor frames were, respectively, (a) (42.8°, 80.7°) and
(−62.6°, 38.6°), (b) (153.8°, 151.6°) and (142.9°, 85.0°), and
(c) (116.4°, 74.7°) and (117.1°, 74.1°). The rate constant for
transitions from closed to open conformations was k2 = 108 s−1.
Relaxation rate constants R1 and R2 for the

15N backbone amide
spins were calculated for chain A of the enzyme I dimer using
standard equations21 and an N−H bond length of 1.02 Å, a
chemical shift anisotropy of −170 ppm, and spectral density
functions obtained from the Fourier transform of eq 19.

Figure 3. Comparison with simulations for different jump rates. The
plots show the correlation functions C(τ) for (thin, black lines) the
simulation and (thick, orange lines) calculations from eqs 19, 20, and
25, (long dashed, reddish-purple lines) for the A diffusion tensor
alone, and (short dashed, bluish-green lines) for the B diffusion tensor
alone. The values of (a) k1Δt = 0.5 × 10−2 and k2Δt = 0.25 × 10−2, (b)
k1Δt = 0.7 × 10−2 and k2Δt = 0.9 × 10−2, and (c) k1Δt = 0.5 × 10−2

and k2Δt = 4.5 × 10−2. Figure 2d shows plots in the same series with
k1Δt = 0.5 × 10−2 and k2Δt = 1.5 × 10−2. The diffusion tensor for the
B state was fixed with principal values DxxΔt = 1 × 10−3, DyyΔt = 6 ×
10−4, and DzzΔt = 3 × 10−4. Other parameters are given in Methods.
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The diffusion tensor for the rigid dumbbell structure of
calmodulin, calculated from PDB file 1CLL, has principal values
Dxx = 9.77 × 106 s−1, Dyy = 10.2 × 106 s−1, and Dzz = 20.4 ×
106 s−1. The principal axes are oriented with Euler angles
(123.0°, 65.0°, 202.8°) relative to the frame of 1CLL. The
diffusion tensor for the isolated N-terminal domain, residues
4−73, has Dxx = 32.9 × 106 s−1, Dyy = 34.6 × 106 s−1, and Dzz =
52.4 × 106 s−1. The principal axes are oriented with Euler
angles 93.3°, 88.5°, and 203.8° relative to the frame of 1CLL.
The diffusion tensor for the C-terminal domain, residues 83−
148, is nearly isotropic and for simplicity, the three principal
values of the diffusion tensor were averaged to yield 42.1 ×
106 s−1. All diffusion tensors, relaxation rate constants, and
spectral density functions were calculated as for enzyme I.
Experimental data were fit to a model in the fast averaging
limit between the rigid conformation and a conformation in
which the central helix is disordered (consistent with the loss of
data for residues in the central helix) and the N- and C-terminal
domains reorient independently. The fitted model was optimized
by minimizing the sum of the squared residuals between
experimental and fitted R2/R1 ratios.

■ RESULTS AND DISCUSSION
To establish the accuracy of the suggested simplification to
the general two-state diffusion problem, correlation functions
calculated using eqs 19, 20, and 25 are compared to correlation
functions obtained by Monte Carlo simulations. Figure 2
illustrates the effect of variations in the values of the diffusion
tensor for the B state, while holding the A state diffusion tensor
constant. The agreement between the simulated correlation
functions and those obtained from the approximation of eq 25 is
very good until the axial ratio of the B diffusion tensor becomes
large (e.g., 2Dzz/(Dxx + Dyy) > 2). Figures 2d and 3 show the
effect of increasing rates of interconversion between conforma-
tions A and B, which also alters the equilibrium populations
of the two states, while keeping the diffusion tensors constant.
Again, the agreement between simulated and modeled correla-
tion functions is excellent.
As a more realistic example, correlation functions and R2/R1

ratios were calculated for the symmetric 128 kDa dimeric
complex of enzyme I, the first component of the phospho-
transferase system of Escherichia coli (E. coli);30 this model
system was adopted by Ryabov and co-workers in their earlier
work.19 The protein is assumed to exchange between more

open and more closed conformations, corresponding to
structures with PDB identification codes 2L5H and 2HWG,
respectively, as depicted in Figure 4. In Figure 5, calculated
correlation functions are shown for Leu 123 and Val 246,
located in the outer domain, and Arg 490, located in the inner
domain. Again, the agreement between the simulated correla-
tion functions and the model functions calculated using eqs 19,
20, and 25 is excellent. Figure 6 shows calculated R2/R1 ratios
for residues in enzyme I as functions of the interconversion
rate constant for a fixed population of the open state of 0.95.
For an axially symmetric molecule with a single conformation,
which is well-approximated by the principal values of the
diffusion tensor for the open state of enzyme I, the R2/R1 ratio
is a function of Y20(θ) = (3 cos2 θ − 1)/2, in which θ is the
polar angle of the N−H bond vector in the principal axis
coordinate system of the diffusion tensor.23 Clearly, this ratio is

Figure 4. Structures of enzyme I in open and closed conformations
derived from PDB files 2L5H and 2HWG, respectively. The two
conformations were oriented by superposing the core inner domains,
residues 270−573 (blue). The variable outer domains, residues 1−269,
are orange (2L5H) and reddish-purple (2HWG).

Figure 5. Sample correlation functions for (a) Leu 123, (b) Val 246,
and (c) Arg 490 of enzyme I. Parameters for the calculations are given
in Methods. The plots show the correlation functions C(τ) for (thin,
black lines) the simulation and (thick, orange lines) calculations from
eqs 19, 20, and 25, (long dashed, reddish-purple lines) for the open
diffusion tensor alone and (short dashed, bluish-green lines) the closed
diffusion tensor alone.
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independent of Y20(θ) for an isotropic molecule, which is well-
approximated by the closed conformation of enzyme I. Parts a
and b of Figure 6 show that the R2/R1 ratios differ strongly
from the expected results from either the open or closed
conformation alone. Residues in the inner core domain of
enzyme I, residues 270−573, have nearly the same orientations
in both conformations and primarily sense the different
diffusional properties of the two states. In contrast, many
residues in the outer domain, residues 1−269, have very
different orientations in the two conformations and the R2/R1
ratios are very strongly perturbed by both the change in
orientation and change in diffusion tensor between con-
formations. Parts b−e of Figure 6 show the effect of the kinetic
rate constants from the slow (Figure 6c) to fast (Figure 6e)
regimes. Figure 6c shows the averaging of the correlation
functions for the two states in the slow limit, and Figure 6e
shows the averaging of the diffusion tensors in the fast limit. In
these two limits, the dependence of the R2/R1 ratios on Y20(θ)
is similar for residues in both the inner and outer domains.
However, as shown in Figure 6b,d, when exchange is neither
fast nor slow, the R2/R1 ratios for residues in the inner core and
outer domains display very different dependencies on Y20(θ).
Thus, in this regime, interconversion between conformational
states with different diffusion tensors can be recognized by

departures of the R2/R1 ratios from the expected functional
dependence on Y20(θ). Notably, in this hypothetical case, a
population of 0.05 for the minor closed state can be detected
provided that good estimates of the diffusion tensors for the
two exchanging conformations are available.
In practice, even a model with only two exchanging con-

formations has a large number of parameters, including the
diffusion tensor principal values and axes systems, the relative
orientation of the two diffusion frames, and the exchange
kinetic rate constants. Fitting of experimental data is likely to be
difficult without independent information about certain of the
model parameters. As an illustration, Figure 7 shows experi-
mental data reported by Chang and co-workers for17 for
calmodulin at 316 K. These data have been fit to a model in
which the N- and C-terminal domains of calmodulin diffuse
independently in state A (consistent with the loss of data for
residues in the central helix) and the molecule has a rigid
conformation with a stable central helix in state B. The experi-
mental data are fit in the fast-exchange limit with a population
of the B state of 0.68, yielding an average τm = 5.29 ns and
S2 = 0.13. The assumption that the A state can be modeled as
independently tumbling N- and C-terminal domains is a simple
approximation, which is unlikely to be strictly true because the
domains are linked through the (disordered) central helix.

Figure 6. Calculated relaxation rate constants for enzyme I. The R2/R1 ratio is shown as a function of k2, the rate constant for transitions from closed
to open conformations. (a, b) The R2/R1 ratio is shown versus (a) the residue sequence position or (b) Y20(θ) = (3 cos2 θ − 1)/2, in which θ is the
polar angle of the N−H bond vector in the principal axis coordinate system of the open conformation for k2 = 108 s−1. Results are also shown as in
panel b for (c) k2 = 106 s−1, (d) k2 = 1010 s−1, and (e) k2 = 1011 s−1. Other parameters are the same as those for Figure 5 and are given in Methods. In
all panels, the horizontal black line and the blue symbols are the calculated results for the closed and open conformations, respectively. In panel a the
reddish-purple symbols are the calculated results for the exchanging system. In the other panels, reddish-purple symbols are for residues in the outer
domain (residues 1−269) and black symbols are for residues in the core inner domain (residues 270−573).
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Consequently, this analysis is not intended to supplant the
analysis of Chang and co-workers (which was based on more
complete analysis of spin relaxation data acquired at three
magnetic fields) or extensive investigations of calmodulin
using residual dipolar couplings31−33 and paramagnetic
relaxation enhancements,34−36 but only is intended to describe
an approach to analyzing experimental data. These results also
serve to indicate that different physical models can be fit to the
same spin relaxation data in the absence of prior knowledge
differentiating between alternatives. As noted, such additional
data may be available from analysis of residual dipolar coupling
constants37,38 and paramagnetic relaxation enhancements.39,40

■ CONCLUSION
Ryabov and co-workers have derived an elegant solution for the
orientational correlation function for molecules interconverting
between states with different diffusion tensors.19 This theory is
very general and applies to proteins with arbitrary diffusion
tensors for the different exchanging states. The present work
shows that simpler results can be obtained for cases in which the
diffusion tensors are only moderately asymmetric by combining

the results of Wong and co-workers for isotropic systems18 with
the locally isotropic quadric diffusion approximation of
Brüschweiler and co-workers.20 The results of this work will
be applicable to many systems of experimental interest, in which
the diffusion tensors are not highly anisotropic, such as
calmodulin and enzyme I, or for exploring the relationship
between various parameters in an exchange model prior to
rigorous numerical optimization with the complete formalism of
Ryabov and co-workers.
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