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Deep generative models have demonstrated success in learning the protein sequence to
function relationship and designing synthetic sequences with engineered functionality.
We introduce the Protein Transformer Variational AutoEncoder (ProT-VAE) as an
accurate, generative, fast, and transferable model for data-driven protein design that
blends the merits of variational autoencoders to learn interpretable, low-dimensional
latent embeddings for conditional sequence design with the expressive, alignment-free
featurization offered by transformer-based protein language models. We implement
the model using NVIDIA’s BioNeMo framework and validate its performance in
retrospective functional prediction and prospective functional design. The model
identifies a phenylalanine hydroxylase enzyme with 2.5× catalytic activity over wild-
type, and a 
-carbonic anhydrase enzyme with a melting temperature elevation of
�Tm = +61 ◦C relative to the most thermostable sequence reported to date and
activity in 23% v/v methyl diethanolamine at pH 11.25 and 93 ◦C corresponding to
industrially relevant conditions for enzymatic carbon capture technologies. The ProT-
VAE model presents a powerful and experimentally validated platform for machine
learning-guided directed evolution campaigns to discover synthetic proteins with
engineered function.

protein design | transformers | protein language models | variational autoencoders |
generative modeling

Proteins are molecular machines that are the workhorses of biology. The ability to
design synthetic sequences with engineered functionalities is a long-standing goal of
synthetic biology with enormous potential in multiple fields including medicine, public
health, biochemical engineering, and clean energy. Rational design of protein sequences
with programmed function requires models of the sequence–function (i.e., genotype–
phenotype) relationship as a means to guide generation of candidate sequences with
the desired functionality for experimental synthesis and testing (1, 2). Historically,
the sequence–structure relationship has frequently been adopted as a proxy for the
sequence–function relationship (3), and a number of powerful approaches exploiting
modern tools such as equivariant neural networks and diffusion models have been
deployed to engineer desired three-dimensional protein structures (2, 4, 5). More
recently, approaches employing techniques such as recurrent neural networks (6, 7),
variational autoencoders (8–14), generative adversarial networks (15), reinforcement
learning (16), and transformers (17–24) have been developed to learn the sequence–
function relationship and have demonstrated remarkable performance in functional
prediction tasks such as fluorescence, stability, and epistasis (17, 25).

A protein design model should possess four key characteristics: i) accurate learning of
the sequence–function relationship, ii) generative design of sequences under this learned
mapping, iii) fast and transferable model training, and iv) the capacity for unsupervised
training over unlabeled sequence data and semisupervised retraining over labeled data.
The first and second properties require a sufficiently expressive and powerful model to
learn the correlated patterns of amino acid mutations (i.e. the “syntax”) underpinning
the sequence–function relationship and permit design of synthetic sequences consistent
with these learned patterns. The third property is important to enable efficient training
of large and expensive neural network models and amortization of training costs via
transferability to multiple protein families. The fourth property is germane to protein
engineering applications where the vast size of protein sequence space and time and labor
costs of experimental assays mean that labeled data points (i.e., sequences annotated
with experimental measurements) tend to be eclipsed by unlabeled data. Based on these
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desiderata, a number of deep generative model architectures have
been employed for data-driven protein design. Two approaches in
particular have received substantial attention: variational autoen-
coders (VAEs) (8, 9, 13, 14, 26) and transformer-based models
(17–24, 27). VAEs comprise encoding and decoding neural
networks that compress and decompress the high-dimensional
sequence data into a low-dimensional latent space exposing
ancestral and functional relationships and can be used to guide
conditional generative sequence generation (8, 13, 26, 28–33).
VAEs typically necessitate that sequences be provided as fixed
length vectors within multiple sequence alignments (MSAs) (34)
that can be laborious to construct, introduce bias, and limit
applications to homologous families. This limitation can be
alleviated through the use of convolutional or recurrent layers
(10, 26), but this can present challenges in learning long-range
mutational correlations. Transformers use the attention mecha-
nism to learn many-body and long-range correlated patterns by
self-supervised training (35) and underpin a number of protein
language models (pLMs) for protein functional prediction and
design (18, 20, 22, 23, 27, 36). The ability to train over variable
length sequences has enabled training of generic pLMs over
millions or billions of nonhomologous protein sequences residing
in large public databases such as UniProt (37) and BFD (38, 39).
Sequence generation can be conditioned on control characters or
partial sequences to guide synthetic protein design (20, 36). The
high dimensionality of the fixed-length latent space of typical
transformer-based pLMs, however, sacrifices easy interpretability
of phylogeny and functional patterns and frustrates conditional
generative design of synthetic proteins with tightly controlled
functionality.

In this work, we introduce the Protein Transformer Variational
AutoEncoder (ProT-VAE) as a model that blends the relative
merits of VAEs and transformers to achieve all four of the desired
criteria above by sandwiching a VAE between the encoder and
decoder stacks of a transformer pLM in order to compress and
decompress the fixed-length internal representation of the trans-
former into a low-dimensional latent space. We construct and
train the ProT-VAE model using the NVIDIA BioNeMo frame-
work and demonstrate its capacity as a powerful, extensible, and
lightweight model for data-driven protein design in retrospective
computational prediction tasks and prospective design of syn-
thetic functional proteins for experimental synthesis and testing.

Results

Protein Transformer Variational AutoEncoder (ProT-VAE).
Prior art. Wang and Wan developed the Transformer-Based
Conditioned Variational Autoencoder wherein a VAE was used
to learn a distribution over story plots and serve as a condi-
tioning variable for the transformer decoder in story completion
tasks (40). Jiang et al. developed the Transformed Variational
AutoEncoder by combining the Music Transformer and Deep
Music Analogy to develop a model capable of learning long-range
dependencies within musical melodies, furnish interpretable
embeddings via a disentangling conditional VAE, and a means
to transfer melody and rhythm between contexts (41). Li et al.
and Park and Lee employed, respectively, pretraining and fine-
tuning approaches to mitigate posterior collapse in a transformer
VAE model for text (42, 43). Arroyo, Postels, and Tombari
proposed the Variational Transformer Network as a synthesis of
self-attention encoders and decoders within a VAE architecture
for layout detection and generation (44). Henderson and Fehr
employed VAEs as an information bottleneck regularizer for
transformer embeddings and used this model to embed and

generate text within a nonparametric space of mixture distribu-
tions (45). The present work is most closely related to the recent
work of Castro et al., who introduced the Regularized Latent
Space Optimization (ReLSO) approach for data-driven protein
engineering (32). The jointly trained autoencoder architecture
underpinning this approach comprises a transformer encoder,
low-dimensional projection into a latent space bottleneck, 1D
convolutional neural network decoder, and fully connected
network to predict function from the latent space embedding.
The ProT-VAE shares similarities with the ReLSO approach
in the use of a transformer-based featurization and subsequent
compression of this encoding into a low-dimensional latent space
but is distinguished by its use of an attention-based decoder
stack for sequence generation to efficiently learn long-range
correlations, its use of a transferable encoder and decoder such
that the lightweight VAE is the only model component that
requires retraining for each protein engineering task, the capacity
for unsupervised/semisupervised training that does not require
all sequences to have attendant experimental measurements, and
validation in wet lab testing of synthetic protein sequences.
ProT-VAE. A schematic of the ProT-VAE architecture is presented
in Fig. 1. The architecture comprises three nested components.
The exterior component is a pretrained ProtT5nv transformer-
based T5 encoder and decoder available within the NVIDIA
BioNeMo framework that is currently generally available and
planned for future open source release (https://www.nvidia.com/
en-us/clara/bionemo/) (46, 47). The intermediate block is a com-
pression/decompression block that compresses the ∼300,000-
dimensional ProtT5nv hidden state into a more parsimonious
32,768-dimensional intermediate-level representation. Similar to
the ProT5nv block, these intermediate layers are also pretrained
on large protein databases. The compression block comprises
1 × 1 convolutions, LayerNorm, and GeLU activations over
three layers with filter sizes of 512, 256, and 64. The decom-
pression block mirrors the compression block but with filters
of size 256, 512, and 768. Empirically, we find reductions of
16× or more in the size of the ProtT5nv hidden state are
possible without any noticeable degradation of reconstruction
quality. The innermost block is a three layer fully connected
maximum mean discrepancy variational autoencoder (MMD-
VAE) employing ReLU activations (48) that takes the flattened
output of the compression block and further compresses it into
a protein family-specific, low-dimensional latent space before
decompressing it and passing its output to the decompression
block. The VAE is a lightweight network that is trained anew for
each particular homologous protein family. The dimensionality
of the latent space is a key hyperparameter of the model. Training
of the VAE is fast and is the only nontransferable component of
the architecture. We note that the model takes as input only
protein sequence data and is trained in an unsupervised manner
that does not appeal to any labels on the sequence data (e.g., func-
tional activity, environmental conditions). This is advantageous
in scaling training to large unlabeled sequence databases but does
necessitate that generative sequence design is limited to producing
sequences similar to the training data without the provision for
more specific guided design toward specific structure, function,
or environmental conditions. Full details of model architecture
and training are provided in Materials and Methods.
Validation systems. We test the capabilities of ProT-VAE in
applications to three proteins. We first conduct retrospective
functional and phylogenetic analyses of the learned latent space
of the Src homology 3 (SH3) protein family involved in diverse
signaling functions. We then perform prospective design of two
synthetic enzymes: phenylalanine hydroxylase (PAH), which
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A B

C

Fig. 1. Overview of the ProT-VAE model architecture comprising three nested components and how the model can be used for embedding and generation. (A) A
pretrained ProtT5nv transformer-based T5 encoder and decoder defines the exterior component. This is followed by a pretrained compression/decompression
block that compresses the ∼300,000-dimensional ProtT5nv hidden state into a 32,768-dimensional intermediate-level representation using a series of stacked
1 × 1 convolutions. The innermost component is a protein family-specific VAE that reduces the intermediate-level representation into a low-dimensional
(typically <10-dimensional) information bottleneck. The ProtT5nv and convolutional compression/decompression components are trained on large libraries
comprising millions of protein sequences whereas the VAE is trained on specific protein families for each particular design task. After pretraining, the T5
encoder/decoder blocks are frozen during the training of the global dimensionality reduction and family-specific encoder–decoders. (B) The outputs of the
family specific encoder define an interpretable latent space suitable for extraction of comprehensible patterns of phylogeny and function for conditioning the
generative decoding of synthetic protein sequences. (C) In turn, the VAEs furnish low-dimensional latent embeddings to guide generative sequence design and
which can be quickly and iteratively retrained in an unsupervised or semisupervised fashion. Essentially, the ProT-VAE combines the properties of transformers
as generic, transferable, and powerful featurizers capable of learning long-range correlations and operating on variable length sequence data, with the capacity
of VAEs to furnish low-dimensional latent embeddings to guide generative sequence design.

catalyzes conversion of phenylalanine to tyrosine, and �- and

-carbonic anhydrases (CA), which catalyze the conversion of
carbon dioxide and water into carbonic acid. In each case, we
test the capability of the ProT-VAE model to learn meaningful
and interpretable latent spaces organizing protein sequences by
ancestry and function, make accurate predictions of protein
function from the learned latent space, and, for PAH and CA,
prospectively design and experimentally test synthetic sequences
with measured function commensurate or superior to natural
sequences.

SH3. The SH3 is a family of small � folds that mediate
protein signaling within cells by binding to type II poly-proline
peptides with sequences N-R/KXXPXXP-C or N-XPXXPXR/K-
C (49, 50). SH3 domains have evolved to perform a variety
of functions within various organisms by evolving differential
binding specificities, resulting in a number of distinct paralogs
(i.e., homologous proteins performing different functions within
the same species) within the SH3 family. Recent work by
Lian et al. trained VAEs over an MSA of ∼5,300 SH3
homologs to develop a deep generative model for synthetic
SH3 design (13). The VAE learned an unsupervised 3D latent
space embedding in which the natural sequences demonstrated
an emergent hierarchical clustering by phylogeny and function.

The Sho1SH3 domain in Saccharomyces cerevisiae (baker’s yeast)
mediates transduction of an osmotic stress signal by binding a
Pbs2 ligand that activates a homeostatic response to balance the
osmotic pressure by intracellular production of glycerol (51). A
high-throughput in vivo osmosensing assay was developed to
measure the relative enrichment of deep sequencing counts of
S. cerevisiae Sho1SH3 knockouts into which mutant SH3 genes
designed by the VAE were transformed. The normalized relative
enrichment (r.e.) score has been shown to quantitatively report
on the binding free energy of the mutant SH3 with the Pbs2
ligand. The assay demonstrated that natural Sho1SH3 orthologs
reside within a localized cluster within the VAE latent space
and generative design of mutant sequences in the vicinity of this
cluster conferred equal or superior high osmolarity protection
to wild type Sho1SH3, which, by construction, possesses a
normalized r.e. score of unity.

We first test the capacity of the ProT-VAE model to learn a
latent space representation capable of accurate prediction of the
experimental measurements of SH3 activity reported in ref. 13.
To do so, we fine-tuned the inner two VAE layers of the ProT-
VAE model on this SH3 dataset employing a 6D latent space.
We present in Fig. 2A a series of 2D projections of the latent
space highlighting those sequences with high normalized r.e.
scores (i.e., high osmosensing activity). In Fig. 2B, we test the
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A

B C

Fig. 2. ProT-VAE organizes the SH3 family by functional activity without an
MSA. (A) Two-dimensional projections of the latent space are shown colored
by normalized relative enrichment (r.e.), where darker points correspond to
more active sequences. Note the clustering of these sequences in all three
projections. (B) Reconstruction percent identity of SH3 sequences stratified
by high (normalized r.e. > 0.6) and low activity. The distributions for each
classification are represented by violin plots separated into those in the
training set (blue) and validation set (green). The number of sequences within
each split are printed on the Left of the plot. Dashed lines correspond to the
25%, median, and 75% quartile ranges. (C) Receiver operating characteristic
(ROC) curves for a logistic classifier predictions of the binary activity labels as
a function of the 6D latent space coordinates trained on the network training
data via fivefold cross validation and evaluated on the validation data. The
green solid line corresponds to the ProT-VAE model, the blue dashed line
corresponds to the previous MSA-based VAE model, and the black dashed
line is the null hypothesis. In the legend, we report the area under the ROC
curve (AUC) scores for each classifier.

generative capacity of the trained model by passing each training
and validation sequence through the model and calculating the
percentage identity of each decoded sequence with the original
sequence. For each of the three proteins considered in this work,
we apply a similarity cutoff range of 20% to 80% to all sequences
recovered during an iterative BLAST search. We then perform
an 85–15% random split into training and validation sets.
This approach ensures that each split contains unique, diverse
sequences, allowing for proper model evaluation during training.
The reconstruction accuracy, particularly of the validation set, is
relatively poor, but we suggest that this may be attributable to
high variability in the training data in amino acid positions not
relevant to osmosensing function. A more important test of the
model for the purposes of data-driven protein engineering is its
ability to predict functional activity based on location in the latent
space. To assess this predictive capacity, we stratified sequences
into a binary dataset of high (normalized r.e. > 0.6) and low
activity, and trained a logistic classifier to predict these binary
labels based on location in the 6D latent space. The predictions
of the trained classifier over the validation partition are presented
in Fig. 2C, where we present the receiver operating characteristic
(ROC) curve. The ProT-VAE slightly outperforms the MSA-
based VAE model in predicting functional performance with an
area under the ROC curve (AUC) of 0.98 compared to 0.95. The
high predictive accuracy of the trained ProT-VAE model demon-
strates that protein activity is strongly localized within the latent
space such that the trained model can accurately predict activity
based on latent space location despite a relatively poor recon-
struction accuracy and, contrary to the VAE, can do so without
the requirement for an MSA that can be laborious to construct,
introduce bias, and limit applications to homologous families.

We hypothesized that the observed localization of osmosensing
function may be due to a learned clustering of the various SH3

paralog groups within the latent space. Accordingly, we next
assess the degree to which the trained ProT-VAE model learns
to separate sequences according to phylogenetic ancestry within
the learned latent space (8, 13). Lian et al. previously observed
a hierarchical nesting of phylogeny and function for the SH3
family within the latent space of their MSA-based VAE: the
latent space first separates by paralog group (i.e., function), and
then by phylogeny within each paralog cluster (13). We seek to
determine whether we also observe these trends within the trained
ProT-VAE model. In Fig. 3A, we demonstrate that the ProT-
VAE model is unable to visually separate phylogeny between
Ascomycota and Basidiomycota in any latent dimension. In
Fig. 3B, we show that there is clear clustering of the paralog groups
of the SH3 family according to the four annotated paralog groups
Abp1, Rvs167, Sho1, and Bzz1. In Fig. 3C, we illustrate that we
now do observe improved separation between Ascomycota and
Basidiomycota within the Sho1 paralog cluster. In SI Appendix,
Fig. S1, we show that the model achieves similar phylogenetic
separations for the other three paralog groups. The capacity
of ProT-VAE to learn functional and phylogenetic separation
within the latent space without the need for MSAs demonstrates
its capacity to learn the underlying correlated patterns of amino
acid mutations and is a prerequisite for MSA-free generative
design of synthetic proteins.

PAH. PAH is a member of the family of aromatic amino acid
hydroxylases (AAAH). Human PAH (hPAH) is an enzyme that
catalyzes the catabolism of one amino acid, phenylalanine, into
another, tyrosine, by hydroxylation of the Phe side chain (52).
This reaction is critical in eliminating surplus phenylalanine and
producing tyrosine as an essential precursor for the biosynthesis

Fig. 3. The ProT-VAE latent space hierarchically organizes the SH3
family first by paralog group and then by phylogeny. (A) Two-dimensional
projections of the latent space are shown colored by two phylogenetic
groups, Ascomycota (blue) and Basidiomycota (orange) with no apparent
organization. (B) Two-dimensional projections of the latent space colored
by paralog groups—Abp1 in blue, Rvs167 in orange, Sho1 in green, and Bzz1
in yellow—exhibit strong clustering. (C) Considering the Sho1 paralog group
(green), we now additionally distinguish by phylogeny—Ascomycota as
circles and Basidomycota as triangles—and observe a hierarchically nested
separation according to phylogeny within this paralog cluster. Analogous
plots for the other three paralog clusters are presented in SI Appendix, Fig. S1.
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of hormones, neurotransmitters, and pigments. Starting from a
human PAH variant, 2PAH (53), we conducted a psiBLAST
search over the NCBI nr database (54) to collate a dataset of
20,000 homologous sequences for training of the inner VAE of
the ProT-VAE with a 6D latent space.

We present our analysis of the trained ProT-VAE model
in Fig. 4. Inspection of the learned latent space reveals good
separation and clustering of the primary functional substrates of
the AAAH family (Fig. 4A). Again, the inference of phylogenetic
and functional relationships within a learned latent space demon-
strates that the model is learning the correlated patterns of amino
acid mutations underpinning the sequence–function relationship
as a prerequisite to subsequent data-driven functional protein
design. To test the generative capacity of the model, we passed
the training and validation sequences through the trained model
and calculated the percentage identity of each decoded sequence
with the original sequence (Fig. 4C ), and, in this case, we observe
high median reconstruction accuracies across all four substrates.
Excellent parity between the distributions for the training and
validation indicate that the model is not overfit. A k = 5-nearest
neighbors classifier trained to predict substrate specificity as a

function of location of a sequence within the 6D latent space is
capable of highly accurate predictions (Fig. 4E).

Annotation of the PAH latent space by phylum demonstrates
that the learned latent space is also well clustered by sequence
phylogeny and, similar to the substrate specificity results, we
observe good clustering of the top phylum labels (Fig. 4B) and
high reconstruction accuracy over all classes, despite a substantial
imbalance across class labels (Fig. 4D). A second k = 5-nearest
neighbors classifier trained over the phylum labels also achieves
high prediction accuracy (Fig. 4F ).

A hallmark of a latent space suitable for optimization and
conditional generative design is sufficient smoothness for inter-
polative sequence design. We present in Fig. 4G an illustration
of two interpolative pathways: one between sequences possessing
similar phylogeny but different substrates, and one between
different phylogenies acting on the same substrate. The substrate
path was traversed by interpolating 50 points using spherical
linear interpolation (SLERP) (55) between the 2PAH human
PAH (hPAH) and a human tyrosine hydroxylase (hTyrH), while
the phylogeny path was interpolated between the same hPAH
and a flavobacteriaceae PAH sequence (bacPAH). By decoding

C D

E F

G
H

I

A

B

Fig. 4. ProT-VAE organizes the AAAH family by substrate specificity and phylogeny within the latent space. Two-dimensional projections of the latent space
colored by (A) substrate specificity and (B) phylogeny. Reconstruction accuracy of AAAH family sequences stratified by (C) substrate specificity and (D) phylogeny.
The distributions for each classification are represented by violin plots separated into those in the training set (blue) and validation set (green). The number
of sequences within each split are printed in the Left of the plot. Dashed lines correspond to the 25%, median, and 75% quartile ranges. (E) Prediction of
functionality and (F ) phylogeny via latent space trained classification model. A k = 5-nearest neighbors classifier was trained on the training data and evaluated
in predicting the labels for the validation set based on the 6D latent space coordinates. The confusion matrices demonstrate that substrate specificity and
phylogeny are localized in the latent space. (G) Two-dimensional projections of spherical linear interpolation (SLERP) paths in the latent space to test its
smoothness and suitability for optimization and design. A substrate specificity path (black) traverses between a human PAH (hPAH) represented by a white
star and a human tyrosine hydroxylase (hTyrH) represented by a black star, and a phylogeny path (red) traverses between the same hPAH and a bacterial
PAH (bacPAH) represented by a red star. Illustration of the fractional similarity to the hPAH starting sequence for (H) the substrate specificity path traversing
between hPAH and hTyrH and (I) the phylogeny path traversing between hPAH and bacPAH. The nodes of the paths are not constructed to coincide with the
embedding of any existing sequences in the latent space and so typically decode to non-natural sequences. We present AlphaFold (4) predicted structures for
the sequence residing at the approximate inflection point of the path (purple) aligned to the structure of the hPAH at the beginning of the path (blue) and hTyrH
or bacPAH at the end of the path (red).
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Fig. 5. Latent-conditioned generative design of synthetic PAH sequences.
(A) Latent space projections of the ∼20,000 training sequences (gray) and
hPAH (gold star). The colored points represent the 190 latent vectors sampled
in the vicinity of hPAH and passed for generative decoding into synthetic
PAH sequences for gene assembly and experimental testing. The color
of the points indicates the measured fold-over-wild-type (FOWT) activity.
Black points are inactive sequences. (B) Activity distribution of the designed
sequences as a function of mutational distance from hPAH. The wild-type
hPAH contains 333 amino acid positions. We present AlphaFold (4) predicted
structures for the (C) highest activity design (2.5× FOWT, 19 mutations from
hPAH; tan) and the (D) most sequence divergent functional design (0.2×
FOWT, 130 mutations from hPAH; green) both alone and aligned to the crystal
structure of the wild-type hPAH (blue).

the sequences at each node in the pathway, we find that each
path executes a smooth transition covering a range of ∼40% in
the fractional sequence similarity for the substrate path (Fig. 4H )
and ∼80% for the phylogeny path (Fig. 4I ).

Taken together, these results indicate that the ProT-VAE has
learned a smooth and interpolatable latent space embedding that
organizes and localizes sequences by both substrate specificity
and phylogeny, and suggests that the latent space can be used
to condition generation of synthetic sequences with desirable
functional properties.

We now experimentally test the PAH sequences generatively
designed by the trained ProT-VAE. In Fig. 5A, we present PAH
latent space embeddings annotated by experimentally measured
fold-over-wild-type (FOWT) activities relative to hPAH gener-
atively designed sequences in the vicinity of hPAH in the latent
space (SI Appendix). Of the 190 proteins tested, 69 (36%) showed
activity and 19 (10%) were more active than hPAH, with a
maximum measured activity of 2.5× that of hPAH. In Fig. 5B,
we illustrate the FOWT activity of the designed sequences as
a function of their mutational distance from hPAH, and in SI
Appendix, Fig. S2, we present an analogous plot as a function of
their mutations from the nearest natural sequence. The ProT-
VAE model has designed a number of highly active sequences
relatively similar to the hPAH (<30/333 mutations) but also
a number of highly mutated sequences (>100/333 mutations)
with measurable activity. AlphaFold (4) predicted structures for
our highest activity design (2.5× FOWT, 19 mutations) and the
most sequence divergent design (0.2× FOWT, 130 mutations)
suggest that the ProT-VAE model has learned to preserve the near
native fold of the wild-type hPAH despite not being furnished
any structural information.

CA. We next consider the design of synthetic CA enzymes that
reversibly catalyze the interconversion of carbon dioxide to
bicarbonate. Five nonhomologous CA families—�, �, 
 , �, and
�—have emerged through convergent evolution (56–58) and are

the subject of industrial interest for biochemical carbon capture
and storage (CCS) technologies (59). The design challenge
is to engineer high thermal and chemical stability required
for the enzyme to tolerate CCS operating conditions without
compromising activity. Commencing from a natural �-CA
[PDB: 1G5C (60)], and 
-CA [PDB: 1THJ (61)], we conducted
a psiBLAST search over the NCBI nr database (54) to collect,
respectively, 73,458 and 73,045 homologous training sequences.
These training data were used to train �-CA and 
-CA-specific
interior VAE models employing 4D latent spaces for each model.

Fig. 6. ProT-VAE organizes the � and 
-CA families in latent space. Two-
dimensional projections of the (A) �-CA and (B) 
-CA latent spaces colored by
phylogenetic labels. (C) �-CA and (D) 
-CA model sequence reconstructions
by phylum. The distributions for each classification are represented by violin
plots separated into those in the training set (blue) and validation set (green).
The number of sequences within each classification and dataset split are
printed in the Left of the plot. Dashed lines correspond to the 25%, median,
and 75% quartile ranges moving from Left to Right. (E) Confusion matrix pre-
dictions of �-CA phylogenetic labels based on the 4D latent space coordinates
under a k = 5-nearest neighbors classifier trained on the network training
data and evaluated on network validation data. (F ) ROC curve for a random
forest classifier predictions of the presence or absence of a 
-CA histidine
catalytic triad as a function of the 4D latent space coordinates trained on
the network training data and evaluated on network validation data. The
training set contained 58,762 sequences with the triad and 3,326 sequences
without; the validation set contained 10,392 sequences with the triad and
565 sequences without. The trained classifier possesses an AUC = 0.98.
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A
B

C

Fig. 7. Synthetic �-CA and 
-CA designed using ProT-VAE yields high thermal stability sequences. (A) Experimentally measured melting points (Tm) of designed
�-CA and 
-CA sequences as a function of their mutational distance from their nearest naturally occurring sequence. The melting temperatures of the most
thermostable �-CA [89 ◦C (63)] and 
-CA [55 ◦C (64)] reported in literature are indicated by horizontal dashed lines. (B) AlphaFold (4) predicted structures for the
highest stability 
-CA (Tm = 116 ◦C, ΔTm = +61 ◦C; tan) presented alone and aligned to the AlphaFold of the highest similarity natural 
-CA (blue). (C) AlphaFold
predicted structures for the highest stability �-CA (Tm = 101 ◦C, ΔTm = +12 ◦C; green) presented alone and aligned to the highest similarity natural �-CA (blue).

We present in Fig. 6 the learned ProT-VAE latent space
embeddings for � and 
-CA. In each case, we observe good
clustering with respect to phylogeny, with the latent space
showing a clear localization of the four leading phyla (Fig. 6A and
B). As was the case for PAH, the sequence identity of the decoded
sequences shows good correspondence between the training and
validation datasets (Fig. 6 C and D). For �-CA, a k = 5-nearest
neighbor classifier exhibits high predictive accuracy in phylum
prediction indicating good localization and organization within
the learned latent space (Fig. 6E). In 
-CA, a catalytic triad of
histidines separated by approximately 20 amino acids in primary
structure is required for function (62). A random forest model
exhibits high accuracy prediction (AUC = 0.98) of the presence
or absence of this triad as a function of location in the learned
latent space (Fig. 6F ). This not only allows discrimination of
sequences possessing the motif from those that do not, but it
also enables us to condition generative sequence design from
regions where we have very high confidence that the motif will
be included in the artificial sequence and elevate our anticipated
yield of functional sequences.

We experimentally verified the activity and stability of syn-
thetic �- and 
-CA sequences designed by the trained ProT-
VAE models (SI Appendix). Of 88 synthetic �-CA sequences,
35 (40%) expressed in our Escherichia coli expression system,
and 20 (23%) exhibited measurable catalytic activity. Of 88
synthetic 
-CA sequences, 22 (25%) expressed in our E. coli
expression system, and all of these demonstrated measurable
activity, which we attribute to our targeted latent space design
strategy that conditions presence of the catalytic motif. A number
of these designed �- and 
-CA sequences have remarkably high
thermostability, possessing melting temperatures of 101 ◦C for
the most stable synthetic �-CA and 116 ◦C for the most stable
synthetic 
-CA (Fig. 7), while maintaining activity comparable
to bovine �-CA (SI Appendix, Fig. S3). The most thermostable
�- and 
-CA sequences reported in literature possess melting
temperatures of 89 ◦C (63) and 55 ◦C (64) respectively. Our
top performing designs represent thermostability improvements
of ΔTm = +12 ◦C and ΔTm = +61 ◦C over the current best.

We further characterize the highest-stability 
-CA sequence
to quantify its enzymatic efficiency and activity under in-
dustrial conditions. The synthetic 
-CA is 0.8× active as
bovine �-CA in normal conditions and is stable up to 93 ◦C

in 23% v/v methyl diethanolamine (MDEA) at pH 11.25,
representing industrially relevant conditions for carbon capture
technologies (65) (SI Appendix, Fig. S4).

Discussion

In this work, we introduce ProT-VAE, an accurate, generative,
fast, and transferable model of the sequence–function rela-
tionship for data-driven protein engineering. By blending the
desirable features of transformers and VAEs, the model admits
alignment-free training in an unsupervised or semisupervised
fashion and furnishes interpretable low-dimensional latent spaces
that facilitate understanding and generative design of functional
synthetic sequences. The model comprises a VAE to distill
task-specific information from generally pretrained, attention-
based transformer encoder and decoder stacks with the aid of
intermediate compression/decompression blocks. We validate
ProT-VAE in applications to three different protein families:
SH3, PAH, and CA. We show that the learned latent spaces are
organized by phylogeny and function and can be used for the
conditional generative design of synthetic proteins with desired
properties. Experimental gene synthesis and assays demonstrate
the generative design of a synthetic PAH sequence possessing
19/333 mutations relative to the wild-type human PAH and
2.5× elevated catalytic activity, and a synthetic 
-CA possessing
35 mutations relative to the highest similarity natural 
-CA, a
melting temperature of Tm = 116 ◦C representing a ΔTm =
+61 ◦C elevation relative to the most thermostable sequence
reported to date, and stability up to 93 ◦C in 23% v/v MDEA
at pH 11.25 corresponding to industrially relevant conditions
for enzymatic carbon capture. The ProT-VAE model represents
an experimentally demonstrated deep generative model for
data-driven protein design that can be generically applied to
other machine learning-guided directed evolution campaigns
to iteratively identify novel proteins with elevated function by
semisupervised retraining of the VAE blocks on the synthetic
sequences and their attendant functional assays (1, 27, 55, 66–
73). Compared to other deep generative protein design models
ProT-VAE offers advantages in learning the sequence–function
mapping to enable direct optimization of protein function in
the absence of structure, which opens the door to both larger
training data [there are O(109) known sequences compared
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to only O(105) solved structures (74, 75)] and the capacity
to engineer proteins for which the structural determinants of
function are poorly characterized or even unknown. Further-
more, by integrating an exterior transformer with an interior
VAE, ProT-VAE eliminates the need to construct a MSA—
thereby avoiding the bias inherent in alignment construction
and enabling training over large databases of nonhomologous
proteins to realize benefits in transfer learning across protein
families—while still furnishing an interpretable low-dimensional
latent space to expose functional and phylogenetic patterns and
guide conditional generative design of synthetic proteins with
engineered functionality.

In future work, we envisage a number of avenues for
innovations and improvements to the model. First, it is of
interest to provision the model with the ability for conditional
sequence generation based on desired functional characteristics,
environmental conditions, or even natural language prompts
(2, 20, 76). This would require elaborating the architecture to
introduce conditioning variables and the curation of training data
for which these metadata are available. Second, we would like to
explore the transferability of not just the exterior encoder/decoder
blocks but also the VAE latent space across protein families.
Currently, we retrain the VAE for each new protein family of
interest, but it would be of interest to explore the degree to
which a single latent space may be transferable across multiple
related protein families to amortize the training costs and realize
potential advantages in elevated data volume through transfer
learning (77). Third, it would be interesting to explore the use
of the model in scaffolding and in-painting tasks wherein a
portion of the protein sequence is defined (e.g., a known binding
site, catalytic site, allosteric positions) and the model is used
to generatively design the remainder of the sequence (78, 79).
Fourth, we are interested to explore the incorporation of physical
priors, which may be particularly valuable in regularizing the
model in low-data regimes, and exploring multimodal learning
paradigms incorporating information on not just sequence but
also structure, functional annotations, and dynamics (66, 80).

Materials and Methods

ProT-VAE Architecture and Training.
Exterior ProtT5nv block. The ProtT5nv block is the first block in the three block
architecture. ProtT5nv is a pretrained transformer-based T5 encoder and decoder
model trained over approximately 46M unique protein sequences within the
UniRef50 (release 05/2022) database after clustering, truncation, and splitting.
This model is made available within the NVIDIA BioNeMo framework that
is currently generally available and planned for future open source release
(https://www.nvidia.com/en-us/clara/bionemo/) (46, 47). The model has 12
layers, 12 attention heads, a hidden dimension of 768, and 198M parameters.
Pre-LN layer normalization and GeLU activation are used throughout the model.
Additionally, encoder embeddings and decoder projections to logits are shared
in this architecture. The model was trained with a maximum input sequence
length of 512 and a masking probability of 15%. Unsupervised mask prediction
was used as a training objective. Dropout was set to 0.1 during training.

ProtT5nv was trained starting from a T5 model pretrained using a natural
language processing (NLP) paradigm. Parameters of all layers from the NLP-
pretrained T5 model, except for encoder and decoder embeddings, were used to
initializetheProtT5nvmodelweights.TheoriginalNLP-pretrainedT5modelhada
dictionary of 29,184 tokens, while the ProtT5nv model only required 128 tokens,
including 96 sentinel tokens. ProtT5nv encoder embeddings were therefore
initialized with 128 first encoder embedding vectors from the NLP-pretrained T5
model. Then, decoder projections to logits were tied to encoder embeddings.

After initialization, the model was further trained with protein sequences from
UniRef50, release 05/2022 (81). Protein sequences longer than 512 amino acids

were removed, resulting in approximately 46M samples. The sequences were
randomly split with 4.35K in validation, 875K in test, and the remaining in
train. ProtT5nv model was trained using data parallelism on 224 V100 GPUs for
58 epochs (approximately 1M iterations) using a microbatch size of 12 protein
sequences per GPU. Inverse square root annealing was used as a learning rate
scheduler, with a minimum learning rate of 0.0 and 10,000 warmup steps.
Fused Adam optimization was used with parameters �1 = 0.9, �2 = 0.999,
and weight decay = 0.01.
Intermediate compression/decompression block. The dimensionality reduc-
tion block serves to efficiently compress and decompress the ∼300,000-
dimensional ProtT5 latent space into a more parsimonious intermediate-level
representation that serves a fixed-length input to a task-specific VAE. This block
was first pretrained on UniRef50, release 05/2022 (81) using a mean squared
error (MSE) reconstruction objective. The block consists of three layers, where
each layer comprises i) 1× 1 convolutions, ii) LayerNorm, iii) GeLU activations,
and the filter size is incremented at each step. In the results presented here, three
layers were used with filter sizes of 512, 256, and 64 in the encoding side and
256, 512, and 768 in the decoding side. In the current implementation, the full
output of the transformer hidden state, including the positions corresponding
to padding tokens, is compressed to create a resultant 32,768-dimensional
intermediate representation that is fed to the family-specific VAE layers.
Interior family-specific VAE block. The ProtT5nv and compression/
decompression stacks are transferable and generic models that need only
be trained once over large libraries of diverse protein sequences and can be
conceived of as furnishing expressive fixed-length featurizations of arbitrary
proteins from unaligned sequences. Only the interior lightweight VAE requires
training anew for each protein engineering task. The primary role of the VAE stack
is to furnish a smooth, low-dimensional latent space that furnishes interpretable
understanding and a springboard for conditional generation of synthetic protein
sequences with engineered function. For all models, the inner VAE consisted
of three fully connected layers with GELU activations and batchnorm. Layer
sizes were for all models were 2,560, 1,280, and N dimensions where N is the
latent space size for that model. Latent space size was N = 6 for the PAH and
SH3 models, and N = 4 for the �-CA and 
 -CA models. To find optimal latent
space size, we run a sweep of 3 to 10 dimensions and identify the latent space
dimension residing at a knee in the reconstruction loss on the validation set,
beyond which only marginal improvements in reconstruction loss are realized
with increased latent dimensionality. We apply the learnings from Zhao et al.
(30) and set lambda = 1.0 and alpha = 1.0 within the MMD-VAE loss function
to maximize the information between the input data and the embedded latent
space and construct smoother latent spaces than an evidence lower bound
(ELBO) loss alone.
Model training. A pretrained ProtT5 was obtained from the previously described
BioNeMo checkpoint. The intermediate dimensionality reduction layers were
pretrained on UniProt using the Adam optimizer with a learning rate of 0.0001
on an MSE objective on reconstruction of the full T5 hidden state. T5 layers
were frozen during this pretraining. Family-specific VAE layers were trained on
full, unaligned sequences belonging to a single homologous protein family.
Sequences were fed in with 15% of positions randomly masked and 20% of masks
corrupted to different amino acids. The training objective was the reconstruction
of the original sequence, optimized using Adam with a learning rate of 0.0001.
The sequence data used to train the SH3, PAH, and CA models are freely
available from the publicly accessible Joint Genome Institute (JGI) (https://
jgi.doe.gov), Protein Families (Pfam) (https://pfam.xfam.org), and National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov)
databases.

PAH Synthetic Sequence Design. We generated latent space locations for
generative decoding by fitting a multidimensional Gaussian with 0.1 variance
centered around the location of the hPAH in the 6D latent space and sampling
6D latent vectors. We filtered out sequences that were duplicates of natural ones
and imposed a maximum similarity of any generated sequence to any natural
sequence in the training data of 99%. To localize the generated sequences
around the hPAH in both latent space and sequence space, we also placed
a cap on the maximum number of mutations (i.e., substitutions, insertions,
deletions) away from hPAH at 140 of the 333 wild-type positions, corresponding
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to a minimum sequence similarity of 58%. Under these criteria, 190 sequences
containing a maximum of 133 mutations away from hPAH and spanning a
range of lengths of 223-339 residues were chosen for experimental synthesis
and testing. The designed protein sequences assayed in 96-well plates using
a Biotek plate reader to evaluate the fluorescence of tyrosine produced over a
defined time period, and activities reported relative to hPAH as FOWT activity.
Full details of the experimental procedures are provided in SI Appendix.

CA Synthetic Sequence Design. For both �-CA and 
 -CA generation, we
sampled sequences from latent space by randomly sampling from a multi-
dimensional Gaussian distribution which was fitted over the latent coordinates
of known functional natural sequences. Additionally, for 
 -CA, each generated
sequence’s latent vectors were passed through the latent space binary classifier
for presence of the catalytic triad to gate through only those with 99% binary
classifier confidence. In each case, we also limited the degree of exploration away
from the training data by stipulating that the generatively decoded proteins
must be within 99% to 70% sequence similarity from the nearest training
sequence, normalized to the reference natural. We used these strategies to
design 88 synthetic �-CA and 88 synthetic 
 -CA sequences that were subjected
to experimental gene synthesis and measurement of catalytic activity and
thermostability. Full details of the experimental procedures are provided in
SI Appendix.

Data, Materials, and Software Availability. Some study data are available:
The sequence data used to train the SH3, PAH, and CA models are freely
available from the publicly accessible JGI (https://genome.jgi.doe.gov/portal/)
(82), Pfam (https://www.ebi.ac.uk/interpro/) (83), and NCBI (https://www.ncbi.
nlm.nih.gov/protein/) (84) databases. The BioNeMo framework used to construct

the machine learning models is freely available from https://github.com/NVIDIA/
bionemo-framework/ (85). The trained machine learning models and their
outputs cannot be shared due to commercial and legal constraints. However,
by using the two components above (i.e., the training data and the BioNeMo
framework) together with the detailed description of the model architecture and
training protocol provided in Materials and Methods, an interested reader could
reconstruct these models. All other data are included in the manuscript and/or
SI Appendix.
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