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Abstract
We address the task of controlled generation of small
molecules, which entails finding novel molecules with de-
sired properties under certain constraints (e.g., similarity to
a reference molecule). Here we introduce MolMIM, a prob-
abilistic auto-encoder for small molecule drug discovery that
learns an informative and clustered latent space. MolMIM is
trained with Mutual Information Machine (MIM) learning,
and provides a fixed length representation of variable length
SMILES strings. Since encoder-decoder models can learn
representations with “holes” of invalid samples, here we pro-
pose a novel extension to the training procedure which pro-
motes a dense latent space, and allows the model to sample
valid molecules from random perturbations of latent codes.
We provide a thorough comparison of MolMIM to several
variable-size and fixed-size encoder-decoder models, demon-
strating MolMIM’s superior generation as measured in terms
of validity, uniqueness, and novelty. We then utilize CMA-
ES, a naive black-box and gradient free search algorithm,
over MolMIM’s latent space for the task of property guided
molecule optimization. We achieve state-of-the-art results in
several constrained single property optimization tasks as well
as in the challenging task of multi-objective optimization, im-
proving over previous success rate SOTA by more than 5% .
We attribute the strong results to MolMIM’s latent represen-
tation which clusters similar molecules in the latent space,
whereas CMA-ES is often used as a baseline optimization
method. We also demonstrate MolMIM to be favourable in
a compute limited regime, making it an attractive model for
such cases.

1 Introduction
The lead optimization stage of the drug discovery process
is time consuming, labor intensive, and has a high rate of
failure, requiring as much as three years and hundreds of
millions of dollars for a single drug. This stage is focused
on optimizing candidate molecules using the design-make-
test cycle, in which scientists design new molecules based
on available assay information, synthesize these molecules,
and then test them in new assays.

The risk and associated cost of this process makes it a
high value automation task in the drug discovery pipeline
(Kim et al. 2020; Engkvist et al. 2021). Successful solutions
to the automated design of small molecules can be directly
applied to related challenges associated with other biologi-
cal modalities, such as protein design (Berenberg et al. 2022)
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Figure 1: MolMIM is a probabilistic encoder-decoder model
with a fixed-size representation that learns a latent distribu-
tion clustered around similar molecules. N is the token num-
ber, D is the embeddings dimension, K is the hidden length.
Tokens are mapped to learnable embeddings.

and optimization of guide RNA sequence for CRISPR sys-
tems (Chuai et al. 2018).

Controlled generation of small molecules entails finding
a new molecule with certain properties and under some con-
straints (e.g., similarity to a reference molecule, Vamathe-
van et al. (2019)). Often these molecules are represented
in a text-based encoding format called SMILES (Weininger
1988). Efficient search of the space of molecules is a chal-
lenging problem due to the high dimensional and sparse na-
ture of samples, where valid molecules are sparse given all
possible combinations of legal characters in SMILES.

A common search method relies on genetic algorithms to
modify a molecule’s SMILES representation using heuris-
tics. Examples would be random mutations and hand-crafted
rules (Sliwoski et al. 2014; Mahmood et al. 2021). The com-
plex and high dimensional search space often leads to low
sampling efficiency of such methods. In addition, the search
is often based on ad hoc rules which requires input from ex-
perts.

An alternative approach to automate this process with
deep learning is to project the discrete molecules into a con-
tinuous space, wherein generation becomes sampling from a
continuous space, and exploration becomes a manipulation
of continuous vectors (Gómez-Bombarelli et al. 2018; Hoff-
man et al. 2022; Winter et al. 2019). Here, we follow that
approach, focusing on learning a dense representation space
that allows efficient sampling and exploration (Fig. 1).
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In this paper we explore the effect of a bottleneck archi-
tecture and latent regularization methods on the ability to
sample novel molecules, and on the performance of con-
strained optimization in the latent space. In more details, we
explore the use of auto-encoder (AE, Goodfellow, Bengio,
and Courville (2016)) with bottleneck, and two latent vari-
able models, Variational auto-encoder (VAE, Kingma and
Welling (2014)) and Mutual Information Machine (MIM,
Livne, Swersky, and Fleet (2019)) which regularize the la-
tent space. We show that all bottleneck models can offer su-
perior sampling, as measured by validity, uniqueness, and
novelty when compared to BART, which lacks a fixed-size
representation. We also show how MIM learns a latent space
which is particularly useful for finding novel molecules with
target properties, especially under a limited compute regime.

Main contributions: We propose MolMIM, a novel prob-
abilistic encoder-decoder model for SMILES data. The
model is trained in an unsupervised manner without the
need for denoising as part of the learning, reducing the
number of training hyper-parameters. We demonstrate that
MolMIM offers superior sampling capabilities when com-
pared to BART, AE, and VAE. MolMIM learns an informa-
tive and clustered continuous representation of molecules
which is particularly suitable for molecular property opti-
mizations using a naive sampling-based CMA-ES algorithm
(Hansen 2006). We emphasize that this level of molecule or-
ganization occurs without the use of molecular properties.
We set multiple state-of-the-art results, demonstrating the
effectiveness of the model in single and multi-property opti-
mization.

2 Formulation
We focus here on denoising auto-encoders (Goodfellow,
Bengio, and Courville 2016) where a corrupted input is en-
coded by an encoder into a latent code. The latent code is
then used to reconstruct the original input by the decoder.
More formally, we can describe auto-encoders (AE) in terms
of encoding distribution qθ(z|x) and decoding distribution
pθ(x|z), where we opt here for a probabilistic view. A de-
terministic encoder can be viewed as a Dirac delta function
around the predicted mean. Given the encoder and decoder,
the denoising AE (DAE) loss, per observation x can be ex-
pressed as,

LAE(θ) = Ez∼qθ(z|x̃) [log pθ(x|z)] (1)

where x ∈ VN for vocabulary V , x̃ is some kind of corrup-
tion or augmentation of x, z ∈ RH , H is the hidden dimen-
sions, and θ is the union of all learnable parameters. Here
we include the identity function in the set of augmentations,
where x̃ ≡ x.

Bottleneck BART Our baseline model is BART (Lewis
et al. 2020), with data augmentation identical to Chem-
former (Irwin et al. 2022). BART is a transformer-based
seq2seq model that learns a variable-size hidden representa-
tion H = |x̃| ×D. That is, the dimension of the hidden rep-
resentation is equal to the number of tokens in the encoder
input times the embedding dimension. This makes sampling
from the model challenging, since the molecule length has

Algorithm 1: Learning parameters θ of MolMIM

Require: Samples from dataset P(x)
1: while not converged do
2: σ ∼ U(0, 1]
3: Denc ← {xj , zj ∼ qθ(z|x, σ)P(x)}Nj=1

4: L̂A-MIM (θ;D) = − 1
N

∑N
i=1

(
log pθ(xi|zi)

+ 1
2 (log qθ(zi|xi, σ) + logP(zi))

)
5: ∆θ ∝ −∇θL̂A-MIM (θ;D) {Gradient computed

through sampling using reparameterization}
6: end while

to be sampled as well. In contrast, learning a fixed-size rep-
resentation, where all molecules are mapped into the same
space, makes sampling easier.

Thus, we propose to replace the Transformer encoder with
a fixed-sized output Perceiver encoder (Jaegle et al. 2021).
Perceiver is an attention-based architecture which utilizes
cross-attention to project a variable input onto a fixed-size
output. More formally, z ∈ RH for a pre-defined dimen-
sion H . We base all proposed models in this paper on the
Perceiver architecture.

We train the bottleneck BART using the same learning
as a regular BART, which does not explicitly promotes any
structure in the learned latent space. We show empirically
that BART learns a latent space with “holes”, where sam-
pling from a “hole” results in an invalid molecule. As such,
in what follows we considered two latent-variable-models
(LVMs) which adds a latent regularization to the reconstruc-
tion in order to promote structure in the latent space.

Variational Auto Encoder Variational Auto-Encoder
(VAE) is a LVM which was introduced by Kingma and
Welling (2014). VAE is trained with the following loss per
observations,

LVAE(θ) = LAE(θ) +DKL (qθ(z|x̃) ‖ pθ(z)) (2)

where pθ(z) is the prior over the the latent code, which is
typically a Normal distribution as in our case. The KL diver-
gence term encourages smoothness in the latent space. We
define our posterior qθ to be a Gaussian with a diagonal co-
variance matrix. We sample z from the posterior using the
reparametrization trick which leads to a low variance esti-
mator of the gradient during training.

A main caveat of VAE is a phenomenon called posterior
collapse where the learned encoding distribution is closely
matching the prior, and the latent codes carry little informa-
tion (Razavi et al. 2019). Posterior collapse leads to poor
reconstruction accuracy, where the learned model performs
well as a sampler, but allows little control over the generated
molecule. Thus, we consider an alternative LVM in what fol-
lows.

Mutual Information Machine Mutual Information Ma-
chine (MIM) is a LVM which promotes informative and
clustered latent codes (Livne, Swersky, and Fleet 2019).
Here we use A-MIM learning (Livne, Swersky, and Fleet



2020), a MIM variant that minimizes the following loss per
observation,

LMIM(θ) = LAE(θ)+Eqθ

[
log
(
pθ(z)qθ(z|x̃)qθ(x)

)]
(3)

where the expectation is taken over samples z ∼ qθ(z|x̃),
similar to VAE. Minimizing LA-MIM(θ) trains a model with
a consistent encoder-decoder, high mutual information, and
low marginal entropy. We direct the reader to Livne, Swer-
sky, and Fleet (2019) for an in depth explanation of the loss
and the various terms.

Unlike VAE, MIM does not suffer from posterior col-
lapse. However, like VAE, it might learn a posterior marginal
distribution that does not match the prior, leaving “holes” (Li
et al. 2020; Livne, Swersky, and Fleet 2020). Here, we in-
troduce a novel simple extension to A-MIM learning which
empirically mitigates the sampling of invalid molecules.

During training, we sample the posterior’s standard devi-
ation,

qθ(z|x, σ) ≡ N
(
z|µθ(x), σ

)
(4)

where σ ∼ U(0, 1] is sampled uniformly, and where the pos-
terior is conditioned on the sampled σ via linear mapping
which is prepended to the input embedding. This, in effect,
is training a model that can accommodate different levels of
uncertainty, and is encouraged to learn a dense latent space
which supports sampling with little to no “holes”. We pro-
vide the training procedure in Algorithm 1, where P(z) is a
Normal distribution.

In order to understand why such a training procedure
would work, it is first important to remember that MIM
learning promotes high mutual information (MI) between
the observation x and the latent code z. The maximization
of MI prevents the decoder from ignoring the input latent
code. Conditioning the encoder on the variance allows the
latent code to carry the uncertainty to the decoder, which
then learns to support accurate reconstruction when small
variance is provided. For comparison, we applied the same
procedure to VAE learning, which led to a complete pos-
terior collapse, where the decoder ignores the latent codes,
leading to poor reconstruction.

3 Experiments
In what follows we evaluate the use of a fixed-sized en-
coder, and latent regularization on small molecule gener-
ation. In particular, we trained MegaMolBART (NVIDIA
2021), a BART model trained on SMILES data; PerBART, a
Perceiver BART, where we replace the Transformer encoder
with a fixed-size output Perceiver encoder; MolVAE, a VAE
which shares the architecture with PerBART and has two
additional linear layers to project the Perceiver encoder out-
put to a mean and variance of the posterior; and MolMIM,
a Mutual Information Machine (MIM), a probabilistic auto-
encoder which shares the same architecture as MolVAE with
an additional linear layer to project the provided standard
deviation into an input embedding.

Our goal is to assess which architecture and latent space
is best suited for novel molecule generation under desired
constraints. We evaluate the models in two categories: 1)

Sampling quality is measured in terms of validity, unique-
ness, and novelty (Sec.3.2). We also introduce a new metric
called effective novelty, the intersection between the afore-
mentioned metrics, that can be interpreted as “the fraction
of useful molecules”. 2) Molecule optimization performance
is evaluated with constrained single property and multi-
objective tasks (Sec. 3.4). We note that we do not explore
the effect of model size, hyper-parameters, and data on the
models. Instead, we train all models on the same data us-
ing the same hyper-parameters, focusing on the effect of the
learning framework and the fixed-size bottleneck.

3.1 Training Details

Dataset: All models were trained using a tranche of the
ZINC-15 dataset (Sterling and Irwin 2015), labeled as re-
active and annotated, with molecular weight ≤ 500Da and
logP ≤ 5. Of these molecules, 730M were selected at ran-
dom and split into training, testing, and validation sets, with
723M molecules in the training set.

Data augmentation: Following Irwin et al. (2022), we
used two augmentation methods: masking, and SMILES
enumeration (Weininger 1988). Masking is as described for
the BART MLM denoising objective, with 10% of the to-
kens being masked and was only used during the training
of MegaMolBART. In addition, MegaMolBART, PerBART,
and MolVAE used SMILES enumeration where the encoder
and decoder received different valid permutations of the in-
put SMILES string. MolMIM was the only model to see an
increase in performance when both the encoder and decoder
received the same input SMILES permutation, simplifying
the training procedure.

Model details: We implemented all models with NeMo
Megatron toolkit (Kuchaiev et al. 2019) . We used a RegEx
tokenizer with 523 tokens (Bird, Klein, and Loper 2009).
All models had 6 layers in the encoder and 6 layers in the
decoder, with a hidden size of 512, 8 attention heads, and
feed forward dimension of 2048. The Perceiver-based mod-
els also required defining K, the hidden length, which relates
to the hidden dimension by H = K ×D where H is the to-
tal hidden dimension, and D is the model dimension (Fig.
1). MegaMolBART had 58.9M parameters, PerBART had
64.6M , and MolVAE and MolMIM had 65.2M . We used
greedy decoding in all experiments.

Optimization: We use ADAM optimizer (Kingma and Ba
2015) with a learning rate of 1.0, betas of 0.9 and 0.999,
weight decay of 0.0, and an epsilon value of 1.0e-8. We
used Noam learning rate scheduler (Vaswani et al. 2017)
with warm-up ratio 0.008, and a minimum learning rate of
1e-5. During training we used a maximum sequence length
of 512, dropout of 0.1, local batch size of 256, and global
batch size 16384. All models were trained for 1,000,000
steps with fp16 precision for 40 hours on 4 nodes with 16
GPU/node (Tesla V100 32GB). MolVAE was trained using
β-VAE (Higgins et al. 2017) with β = 1

H where H is the
number of hidden dimensions. We have found this choice to
provide a reasonable balance between the rate and distortion
(see Alemi et al. (2018) for details).



Competing Models For reader convenience we provide
here all models that appear in the following tables: CDDD
(Winter et al. 2019), JT-VAE (Jin, Barzilay, and Jaakkola
2018), GCPN(You et al. 2018), REINVENT (Olivecrona
et al. 2017), GVAE-RL and RationaleRL (Jin, Barzilay,
and Jaakkola 2020), MARS (Xie et al. 2021), MolDQN
(Zhou et al. 2019), VSeq2Seq (Bahdanau, Cho, and Ben-
gio 2015), VJTNN/VJTNN+GAN (Jin et al. 2019), GA
(Nigam et al. 2020), MMPA (Dalke, Hert, and Kramer
2018), AtomG2G and HierG2G (Jin, Barzilay, and Jaakkola
2019), DESMILES (Maragakis et al. 2020), QMO (Hoffman
et al. 2022), and GraphDF (Luo, Yan, and Ji 2021).

3.2 Sampling Quality
Our motivation is to be able to sample from our pre-trained
models to generate useful molecules for a variety of opti-
mization tasks. To do so, we perturb the latent code of a
given molecule by adding Gaussian noise. In more detail,
sampling entails

x′ ∼ pθ(x|z′ = z + ε) (5)

where the latent code z = Ez [qθ(z|x)] is taken to be the
posterior mean, and ε ∼ N

(
µ = 0, σ

)
is noise sampled

from a Gaussian with a given standard deviation σ. In the
case of MegaMolBART and PerBART which have determin-
istic encoders, we define a posterior as a Dirac delta around
the encoder output. We note that such a sampling procedure
could benefit from a dense latent space, where random latent
codes would map to valid molecules.

In what follows we probe the various models, measuring
their sampling performance according to the following com-
mon metrics (Brown et al. 2019): Validity is the percentage
of generated molecules that are valid SMILES1; Unique-
ness is the percentage of generated valid molecules that are
unique; and Novelty is the percentage of generated valid and
unique molecules that are not present in the training data.

Novelty is based on molecules that are not present in the
training set. However, it does not discriminate against du-
plicates. In such a case, one might need to sample multi-
ple times to achieve the desired quantity of novel molecules.
For this reason, it can be convenient to have a single metric
which describes the sampling efficiency of the model.

As an example, imagine a model reconstructs the novel
input molecule 50% of the time, and the other 50% of the
time generates different molecules which are valid, novel,
and unique. If such a model produces 10 samples, the nov-
elty will be 100%, and uniqueness will be 60%. If the ob-
jective is to generate 10 novel molecules, we will have to
sample 20 times from this model, which is deceiving for a
novelty of 100%.

To address the above issue, and in order to simplify the
evaluation of the sampling quality of a model, we introduce
two new metrics: Non-Identicality is the percentage of valid
molecules that are not identical to the input; Effective Nov-
elty is the percentage of generated molecules that are valid,
non identical, unique, and novel. Effective novelty was cre-
ated to provide a single metric that measures the percentage

1Validity test is implemented by RDKit: http://www.rdkit.org

of “useful” molecules when sampling, combining all other
metrics in a practical manner. In the case of the example
above, effective novelty will be 50%. We point the reader to
supplementary material for an additional discussion.

Table 1 shows the results of the various sampling metrics,
as define above, for best performing models. We performed a
grid-search over the hidden length K ∈ {1, 2, 4, 8, 16}, and
the sampling noise scale σ ∈ (0, 2] (in 0.1 increments) in or-
der to maximize the effective novelty. The results were com-
puted with 10 sampled molecules per input molecule. We
randomly sampled 20,000 input molecules from the ZINC-
15 test set at the optimal noise scale per model, and report
the average sampling metrics.

We conclude, based on Table 1, that the overall sam-
pling quality is improved by the bottleneck architecture
of PerBART, and further improved by regularization over
the latent codes (i.e., MolMIM, MolVAE). Importantly,
MolMIM’s best effective novelty was achieved using the
smallest number of latent dimensions, which is beneficial
for sample-based optimization in the latent space. The use-
fulness of effective novelty is demonstrated by the CDDD
model, which has the best novelty out of all of the bench-
marked models, but its effective novelty is 12% lower than
MolMIM.

3.3 Latent Space Structure

Figure 2: Average Tanimoto similarity (y-axis) between in-
put and non identical interpolated molecules (x-axis is in-
terpolation step). The colored areas mark the corresponding
standard deviation. MolMIM clusters similar molecules and
shows the smallest variance in the early interpolation steps.

In addition to the ability to sample valid, unique, and
novel molecules, we would like to train a model with a
learned latent structure that will lend itself to optimization of
molecular properties. In the context of unsupervised learn-
ing, the structure can relate to similarity of observations, or
intrinsic properties of latent codes (e.g., smoothness). We
hypothesize that a latent space where latent codes of similar
molecules are clustered together will allow for fine-grained
control while searching for molecules with target properties.

In what follows we explore the clustering of molecules in
the latent space using pair-wise interpolations of 1,000 test
set molecules. This allows us to better understand the qual-
itative differences in the spatial structures of the respective
latent spaces of each model. An interpolation entails pro-
jecting two molecules onto the latent space by taking the la-
tent codes to be the respective mean of the posterior for each



Model K Latent Dim. Eff. Nov.(%) Validity(%) Unique(%) Non Id.(%) Novelty(%) σ Test Time Batch
MMB - variable 51.1 75 84.8 74.4 93.1 1.2 8.7 hours 100 †
PerBART 4 2048 59.1 71.8 94.9 88.4 94.3 0.7 38 min 500
MolVAE 4 2048 93.9 95.7 100 100 98.1 1.2 63 min 500
MolMIM 1 512 94.2 98.7 100 99.9 95.5 1.42 30 min 500
CDDD 1 512 82.2 84.5 98.9 98 99.4 1.2 12 hours 1

Table 1: Molecule sampling quality was evaluated with 20,000 molecules randomly selected from the test set, where 10 samples
were acquired per molecule. MMB stands for MegaMolBART. K is hidden length. σ is the optimal scale of Gaussian random
noise used in sampling. †batch size constrained by memory. Top models are developed herein.

(a) Initial (b) Perturbed (c) Initial (d) Perturbed (e) Similarity Map

Figure 3: MolMIM’s fine-grained control over molecule generation. (a-b) Small perturbations lead to changes in chirality only
(circled in dashed red). (c-d) Bigger changes allow the substitution of a single atom (red background in similarity map (e)). The
similarity map depicts green background for chemically similar structures, and red background for modified structures.

molecule. Following the method used by Gómez-Bombarelli
et al. (2018), we then linearly interpolate between the latent
codes over 10 equidistant steps, and for each interpolated
latent code we decode a corresponding molecule. We then
compute the Morgan fingerprint (Rogers and Hahn 2010)
with 2048 bits and radius 2, resulting in a bit vector of
hashed molecular features for each molecule. Finally, the
average Tanimoto similarity (Rogers and Hahn 2010) is cal-
culated between the Morgan fingerprints of the starting and
all non-identical interpolated molecules.

Fig. 2 shows that MolVAE’s smooth latent space results
in a gradual similarity decline, whereas MolMIM contains
regions of high similarity followed by a sharp drop off. No-
tice how MolVAE and PerBART show lower average sim-
ilarity for interpolation step 1. For MolVAE, it is due to
poor reconstruction – adding no noise can result in a differ-
ent molecule upon decoding. For PerBART, the less ordered
structure of its latent space leads to a quick divergence when
small amounts of noise is added.

In contrast, MolMIM maintains near perfect similarity for
steps 1 and 2, while producing non identical molecules. This
is an interesting result as MolMIM is not explicitly trained
with similarity information and Tanimoto similarity cannot
be calculated directly from SMILES strings (i.e., it requires
converting SMILES to Morgan Fingerprints first). We con-
clude from Fig. 2 that the latent structure of MolMIM is
clustered by meaningful chemical similarity.

Fig. 3 depicts qualitative examples of the fine-grained
control supported by MolMIM. Fig. 3(a-b) demonstrate how
small perturbations can lead to minimal changes, such as in-
versions of chiral centers of the molecule – i.e., circled in
dashed red is a change in chirality only of the molecule. 3(c-

e) depict more significant changes where the similarity map
highlights in red a single-atom change. The ability to gener-
ate molecules of even more diversity is discussed next.

3.4 Small Molecule Optimization
In what follows we use CMA-ES (Hansen 2006), a greedy,
gradient-free (i.e., 0th order optimization), evolutionary
search algorithm that maximizes a black-box reward func-
tion for small molecule optimization. CMA-ES is often used
as an optimization baseline (e.g., Yang et al. (2021)), and
does not scale well to high-dimensional problems. We apply
CMA-ES directly to the latent space to generate proposed
latent solutions. These putative solutions are then greedily
decoded to generate molecules. The molecules are the re-
quired inputs to the reward function, which is comprised of
molecular property oracle functions. We used TDC (Huang
et al. 2021) oracle functions in order to compute all chem-
ical property values in this section. Here we demonstrate
how such a naive algorithm can deliver state-of-the-art re-
sults given an informative and clustered latent space.

Single Property Optimization In what follows we ex-
plore the optimization of a single chemical property un-
der a Tanimoto similarity constraint δ, which limits the al-
lowed distance from the input molecule. Specifically, we tar-
get Quantitative Estimate of Drug-likeness (QED, Bickerton
et al. (2012)) and penalized logP (Jin, Barzilay, and Jaakkola
2018).

We use 800 molecules with QED ∈ [0.7, 0.8] (Jin et al.
2019), and 800 molecules with low penalized logP scores
(Jin, Barzilay, and Jaakkola 2018) as the starting points for
our respective optimizations. For the QED task, the success



QED (%) Penalized logP
Task δ = 0.4 δ = 0.6 δ = 0.4

JT-VAE 8.8 0.28 ± 0.79 1.03 ± 1.39
GCPN 9.4 0.79 ± 0.63 2.49 ± 1.30
MolDQN - 1.86 ± 1.21 3.37 ± 1.62
MMPA 32.9 - -
VSeq2Seq 58.5 2.33 ± 1.17 3.37 ± 1.75
VJTNN+GAN 60.6 - -
VJTNN - 2.33 ± 1.24 3.55 ± 1.67
GA - 3.44 ± 1.09 5.93 ± 1.41
AtomG2G 73.6 - -
HierG2G 76.9 - -
DESMILES 77.8 - -
QMO 92.8 3.73 ± 2.85 7.71 ± 5.65
GraphDF - 4.51 ± 5.80 9.19 ± 6.43
MolMIM 94.6 7.60 ± 23.62 28.45 ± 54.67
MolMIM† 4.57 ± 3.87 9.44 ± 4.12

Table 2: QED and penalized logP optimization under sim-
ilarity constraint δ. QED results show success percentage,
and penalized logP show the mean and standard deviation
of the improvement in value. † limits logP solutions to im-
provement ≤ 20. Bottom models are developed herein.

Figure 4: Penalized logP distribution of initial molecules
(blue) and optimized molecules under increasingly stringent
Tanimoto similarity constraints of 0.6 and 0.4 (green and or-
ange, respectively). The right hand side mode represents a
common bias in the penalized logP oracle function.

rate is defined as the percentage of generated molecules with
QED ≥ 0.9 while maintaining at least a δ = 0.4 Tanimoto
similarity to the respective input (Jin et al. 2019). For the pe-
nalized logP task, we report the mean and standard deviation
of penalized logP improvement under a similarity constraint
for δ ∈ {0.4, 0.6} (Jin, Barzilay, and Jaakkola 2018). We
provide the reward functions and additional information in
the supplementary material.

In both experiments we follow a query budget of 50,000
oracle calls per input molecule, following Hoffman et al.
(2022). We have found that dividing each optimization into
50 restarts with 1,000 CMA-ES iterations2, and a population
size of 20 to yield the best results. We omit MegaMolBART
from the next experiments, since it is unclear how to uti-
lize CMA-ES in a variable size representation. We exclude
the results of MolVAE and PerBART from most experiments
due to their poor performance and excessively long run time.
We point the reader to Table. 3, which is discussed later, as

2We tested 100, 300, 400, 800, 1000, and 1600 iterations

Success % of QED (iter) Pen. logP (δ = 0.4)
Model 100 300 400 800 avg. ∆ Succ. %
PerBART 2 2.12 - - 2.6 ± 2.3 23
MolVAE 6.6 21.2 - - 3.0 ± 2.8 40.6
MolMIM 37 58 66.8 70.5 4.2 ± 1.6 78
CDDD 16 38 51.0 70.2 2.1 ± 2.4 45

Table 3: Results based on compute limited to a single restart
and specified number of iterations. Penalized logP uses 100
iterations. Missing results are due to excessively long run
time. Top models are developed herein.

an empirical evidence.
Table 2 shows that MolMIM yields new state-of-the-art

results in both experiments. We also point the reader to the
large value of the standard deviation for the penalized logP
experiment. We note that the results are in fact correct, and
that MolMIM exploits a known flaw in the logP oracle func-
tion where generating molecules with long saturated carbon
chains yield high logP values (Renz et al. 2019).

Fig. 4 clearly shows a bimodal distribution with the right
hand side mode depicting the logP exploitation described
above. As these saturated molecules are not useful in prac-
tice (Renz et al. 2019), we also provide results of MolMIM†
in Table 2. Here we limit the maximal penalized logP im-
provement to 20, removing the problematic mode. By doing
so we obtain a significantly smaller standard deviation, even
compared to competing methods, while still maintaining the
highest mean value.

As a final single property experiment, we explore the
above tasks using significantly reduced query budgets, and
only a single restart. We consider 100, 300, 400, and 800
iterations for the QED task, and 100 iterations for the penal-
ized logP task. Table. 3 shows the results, where MolMIM
consistently provides superior results over all other models,
including CDDD, which is trained with chemical property
information. It is important to mention that only CDDD ex-
hibited generation of invalid molecules during the optimiza-
tion procedure. We note that the improved performance of
both MolMIM and MolVAE, relative to PerBART demon-
strates the importance of having a regularized latent space.
We also point the reader to the significant difference between
MolMIM and MolVAE, demonstrating the importance of the
learned latent spaces.

Multi-Objective Property Optimization As a final ex-
periment, we chose a more challenging setting that better
represents the complexity of real-world drug discovery (Co-
ley, Eyke, and Jensen 2020). The task is defined over multi-
ple objectives, where a randomly chosen molecule is jointly
optimize for QED ≥ 0.6, SA ≤ 4.0, JNK3 ≥ 0.5, and
GSK3β ≥ 0.5. We follow the same procedure and model
usage as defined by Jin, Barzilay, and Jaakkola (2020) for
predicting inhibition of JNK3 and GSK3β.

We consider three variants of initial molecule selection:
(R) random start - 2,000 initial molecules are randomly sam-
pled from the ZINC-15 test set; (A) approximate start - 551
initial molecules that satisfy all three conditions QED ∈



GSK3β + JNK3 + QED + SA
Model Success (%) Novelty (%) Diversity
JT-VAE 1.3 - -
GVAE-RL 2.1 - -
GCPN 4.0 - -
REINVENT 47.9 - -
RationaleRL 74.8 56.1 0.621
MARS 92.3 82.4 0.719
MolMIM (R) 97.5 71.1 0.791
MolMIM (A) 96.6 63.3 0.807
MolMIM (E) 98.3 55.1 0.767
MolMIM (E)† 99.2 54.8 0.772

Table 4: Multi-objective molecule optimization. (R) random
initialization, (A) promising precursor initialization, (E) ini-
tialization with exemplars. † results are based on additional
restarts. Bottom models are developed herein.

[0.25, 0.4), JNK3 ∈ [0.25, 0.35),GSK3β ∈ [0.25, 0.35);
(E) exemplar-based - 741 initial molecules that already sat-
isfy the required success conditions. In the case of (E), we
also force the optimized molecule to have at most 0.4 Tani-
moto similarity to the initial molecule. The multi-property
experiments entailed 28 restarts of 1500 iterations with a
population size of 20. We provide the reward functions in
the supplementary material.

Table 4 shows the results measured by success rate,
novelty, and diversity, as defined by Jin, Barzilay, and
Jaakkola (2020). Here, novelty is the percentage of gener-
ated molecules with Tanimoto similarity less than 0.4 com-
pared to the nearest neighbor in the ChEMBL training set
(Olivecrona et al. 2017). Diversity is defined as the pair-
wise Tanimoto similarity over Morgan fingerprints between
all generated molecules 1− 2

n(n−1)
∑
x 6=x′ TanSim(x,x′)

where x is sampled without replacement.
MolMIM clearly improves the success rate, and diver-

sity over all existing methods. MolMIM does not achieve
SOTA novelty but does present a significant improvement
over RationaleRL. We note that in this case, novelty does
not measure the percent of novel generated molecules as
done in 3.2. The novelty performance of MARS relative to
MolMIM warrants further exploration. A possible explana-
tion for this could involve the use of graph based models by
MARS (Xie et al. 2021), which might facilitate the learn-
ing of some shape-based molecular features more efficiently
than SMILES-based models such as MolMIM.

We also present in Table 4 results for MolMIM (E)†,
where we launched additional restarts, reaching to 49 in to-
tal. In such a case we present a very high success rate at
the expense of diversity. We added MolMIM (E) to mimic
more realistic drug development where we generate a new
molecular structure while maintaining the desired prop-
erties. MolMIM (A) targets drug development use cases
where, starting from a promising precursor, we want to gen-
erate a successful related molecule.

In summary, we present three variants for multi-objective

optimization. MolMIM demonstrates new state-of-the-art
results using a simple CMA-ES algorithm, and compares
favorably with methods such as MARS, which utilizes a
complex Markov chain Monte Carlo sampling algorithm.
We attribute the success of MolMIM to the informative and
clustered latent space which proved to be useful for various
molecule optimization tasks.

4 Related Work
The challenges associated with the task of molecular opti-
mization have resulted in the development of a number of
seq2seq models. Several are described below and two will be
used for comparison to the models developed in this work.

ChemVAE (Gómez-Bombarelli et al. 2018) was one of
the first VAEs developed for querying chemical space. The
model learns physical chemical information by jointly train-
ing a molecular property predictor from the continuous la-
tent codes during the training of the model. This model, like
many SMILES-based models, utilizes character level text
encoding. A later model, called CDDD (Winter et al. 2019)
which stands for continuous data driven descriptors, has a
similar architecture – an auto encoder with regression loss –
but was trained on a larger dataset. The model was trained
on 72M molecules from ZINC-15 (Sterling and Irwin 2015)
and PubChem (Kim et al. 2018), which are two popular pub-
licly available cheminformatics databases.

Chemformer (Irwin et al. 2022), is a seq2seq transformer
model based on the BART (Lewis et al. 2020) architec-
ture. This model was trained on 1.45 Billion molecules from
ZINC-15 (Sterling and Irwin 2015) – 20X the size of the
dataset used to train CDDD. Chemformer can be consid-
ered the precursor of the Perceiver based-models described
herein.

We propose to utilize a Perceiver (Jaegle et al. 2021) en-
coder architecture, replacing the usual encoder in BART
(Lewis et al. 2020). The Perceiver encoder outputs a fixed-
size representation, where molecules of various lengths are
mapped into a shared space, allowing us to learn latent
variable models (VAE Kingma and Welling (2014), MIM
- Mutual Information Machine (Livne, Swersky, and Fleet
2020)).

The effective use of deep learning models for lead opti-
mization also requires a method for efficiently manipulating
the model’s latent space to generate molecules similar to an
example but with improved properties, such as target bind-
ing affinity, solubility, reduced toxicity. Previous approaches
have employed one of two methods, those which are em-
ployed during model training, such as reinforcement learn-
ing (Daniel et al. 2018) and grouping molecular transforma-
tions pairs with a loss function to predict changes in physi-
cal chemical properties (He et al. 2022), and those which are
decoupled from training, such as query-based guided search
(Hoffman et al. 2022). Our approach, which utilizes CMA-
ES, is part of the later group.

5 Conclusions
In this paper we presented a novel probabilistic auto-encoder
for small molecules called MolMIM. Trained with Mutual



Information Machine (MIM) learning, the model learns an
informative and clustered latent space and samples novel
molecules with high probability. We utilize MolMIM to set
multiple state-of-the-art results in single and multiple prop-
erty optimization tasks through the incorporation of a simple
search algorithm, CMA-ES. Importantly, any successful so-
lution to the small molecule optimization problem can be ap-
plied to other biological modalities such as proteins, RNA,
and DNA.

Future research directions will include improvement of
the latent space search, replacing CMAE-ES with a more
informed search algorithm. In addition, training MolMIM
over a graph representation of molecules instead of SMILES
might yield further improvement.
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A Supplementary Material
A.1 Small Molecule Optimization
In this section we formulate the reward functions that were
used in the small molecule optimization part of the main
body.

Single Property Optimization Quantitative Estimate of
Druglikeness (QED) is a simple rule-based molecular prop-
erty that measures drug-likeliness (Bickerton et al. 2012).
Penalized logP (Jin, Barzilay, and Jaakkola 2018) is logP3

minus the Synthetic Accessibility (SA) score (Ertl and
Schuffenhauer 2009).

Formally, we define the following reward functions for
our CMA-ES optimization:

RQED = min(
QED

0.9
, 1) + min(

TanSim

0.4
, 1) (6)

RplogP =
plogP

20
+ min(

TanSim

δ
, 1) (7)

where TanSim is the Tanimoto similarity, δ is the value of
the similarity constraint, and QED, plogP are the corre-
sponding properties. Loss scaling of each term was tuned
manually over a few test runs.

Multi Property Property Optimization JNK3 is the inhi-
bition of c-Jun N-terminal kinase-3. GSK3β is the inhibition
of glycogen synthase kinase-3 beta.

Formally, we show the reward function below,

RR,A
MP =

QED +GSK3β

2
+
SA

40
+ JNK3 (8)

RE
MP =

1

50
RR,A

MP + min(1.0,
1− TanSim

1− 0.4
) (9)

where TanSim is the Tanimoto similarity, and
QED, SA, JNK3, GSK3β are the corresponding
properties. Loss scaling of each term was tuned manually
over a few test runs.

A.2 Finding Optimal Noise Scale for Top Models
In this section we show the results of hyper-parameter search
for the optimal noise scale that maximizes effective novelty,
per model. See Figs. 5, 6, 7, 8, 9. We omit here the search
for the optimal hidden length K per model, where we con-
sidered K ∈ 1, 2, 4, 8, 16 for all models.

3logP is the log10 of the octanol and water solute partition ratio
and is a measure of hydrophobicity with larger values indicating
increased hydrophobicity.

Figure 5: Validity as a function of noise scale. Note how la-
tent variable models, MolVAE and MolMIM, are consistent
while the others, MegaMolBART and PerBART, see a sharp
decline at larger noise scales.

Figure 6: Uniqueness as a function of noise scale. Note Meg-
aMolBART is a lower bound for the entire range of tested
noise scales.

Figure 7: Non Identicality as a function of noise scale. Note
at a nose scale of 0, only MolVAE has a non zero non iden-
ticality as a result of poor reconstruction (i.e., relates to pos-
terior collapse).



Figure 8: Novelty as a function of noise scale. Note how la-
tent variable models, MolVAE and MolMIM, are consistent
while the others, MegaMolBART and PerBART, see a sharp
decline due to the increased validity issues at large noise
scales.

Figure 9: Effective Novelty as a function of noise scale.
Note the non latent variable models, MegaMolBART and
PerBART, have a parabolic shape due to validity issues at
large noise scales.



A.3 Sampling Metrics
Sampling Metric Formulation Here, we formulate the
sampling metrics as described in the main body:

validity =
|V |
|G|

(10)

uniqueness =
|U |
|V |

(11)

novelty =
|N |
|U |

(12)

non identicality =
|Ī|
|V |

(13)

effective novelty =
|N ∩ Ī|
|G|

(14)

where
• G is the set of all generated molecules
• V is the subset of all valid molecules in G
• U is the subset of all unique molecules in V
• N is the subset of all novel molecules in U
• Ī is the subset of all non identical molecules in V

are the corresponding sets.
The design flaw in Eq. 12 is that N is a subset of U and

therefore does not consider the total amount of generated
molecules G. Effective novelty not only measures the per-
centage of useful molecules but it also provides a measure-
ment for sampling efficiency as it is defined over all gener-
ated molecules in Eq. 14.
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Figure 10: Given a novel input molecule S, we provide an
example sampling output used in Figure. 11 to visualize all
of the defined metrics Eq. 10 - 14

Visualizing Effective Novelty We provide depiction of ef-
fective novelty in Figs. 10-11.
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Figure 11: Here we highlight the difference between novelty
and effective novelty. For each metric we mark the numer-
ator (green), denominator (green + red), and the irrelevant
part(gray). High novelty might still lead to low efficiency in
sampling novel molecules.
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