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Abstract

The data-driven design of protein sequences with desired function is
challenged by the absence of good theoretical models for the sequence-
function mapping and the vast size of protein sequence space. Deep
generative models have demonstrated success in learning the sequence
to function relationship over natural training data and sampling from
this distribution to design synthetic sequences with engineered func-
tionality. We introduce a deep generative model termed the Protein
Transformer Variational AutoEncoder (ProT-VAE) that furnishes an
accurate, generative, fast, and transferable model of the sequence-
function relationship for data-driven protein engineering by blending
the merits of variational autoencoders to learn interpretable, low-
dimensional latent embeddings and fully generative decoding for con-
ditional sequence design with the expressive, alignment-free featur-
ization offered by transformers. The model sandwiches a lightweight,
task-specific variational autoencoder between generic, pre-trained trans-
former encoder and decoder stacks to admit alignment-free training
in an unsupervised or semi-supervised fashion, and interpretable low-
dimensional latent spaces that facilitate understanding, optimization,
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and generative design of functional synthetic sequences. We imple-
ment the model using NVIDIA’s BioNeMo framework and validate
its performance in retrospective functional prediction and prospective
design of novel protein sequences subjected to experimental synthesis
and testing. The ProT-VAE latent space exposes ancestral and func-
tional relationships that enable conditional generation of novel sequences
with high functionality and substantial sequence diversity. We antici-
pate that the model can offer an extensible and generic platform for
machine learning-guided directed evolution campaigns for the data-
driven design of novel synthetic proteins with “super-natural” function.

Keywords: protein design, transformers, variational autoencoders, generative
modeling

1 Introduction

Proteins are molecular machines that are the workhorses of biology. Natu-
ral proteins have evolved under natural selection to perform diverse biological
functionalities, including enzymatic catalysis, molecular transport, cellular
signaling, and immunological surveillance. The ability to design synthetic
sequences with engineered functionalities is a long-standing goal of synthetic
biology with enormous potential in multiple fields including medicine, public
health, biochemical engineering, and clean energy. Protein sequence space is
almost unimaginably vast: restricting ourselves to just the 20 natural amino
acids, there are ∼10260 possible variants of a 200 amino acid protein, com-
pared to “only” ∼1080 protons in the visible universe [1]. The preponderance
of possible proteins have never been realized over the course of evolutionary
history and this rich space presents a large palette with which to discover
novel proteins with “super-natural” or even non-natural function [2]. The vast
size of this space also presents a challenge since exhaustive traversal by either
experiment or computation is intractable, and the estimated probability of
a randomly selected sequence being functional has been estimated to be as
low as 1 in 1077 [3]. Moreover, the higher or more specialized functionality
desired, the rarer such sequences become [4–6]. The rational design of protein
sequences with programmed function requires models of the sequence-function
(i.e., genotype-phenotype) relationship and a means to guide sampling from
this distribution to generate plausible candidate sequences with the desired
functionality for experimental synthesis and testing [4, 7].

The protein sequence-function relationship is a complex mesoscale phe-
nomenon for which we lack good theoretical models. Accordingly, significant
effort has been invested into the development of data-driven and empirical
approaches. The famous sequence hypothesis of Crick and Watson stipu-
lates that within a particular environment the protein amino acid sequence
dictates the three-dimensional protein structure that, in turn, dictates the
protein function [8–10]. Historically, the sequence-structure mapping has been
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adopted as a proxy for the sequence-function relationship, with the func-
tional design task reduced to the engineering of a particular three-dimensional
fold (e.g., optimization of an enzymatic active site, engineering of a binding
cleft). In recent years, deep learning networks exploiting modern tools such
as equivariance-inducing architectures and diffusion models have broken new
paths in computational protein structure prediction with atomic-level accu-
racy [11, 12] and, very recently, programmability of desired three-dimensional
structures [7]. These technological advances have also powered direct learning
of the sequence-function relationship using approaches such as recurrent neu-
ral networks [13, 14], variational autoencoders [15–21], generative adversarial
networks [22], reinforcement learning [23], and transformers [24–31]. A number
of models have demonstrated remarkable performance in functional prediction
tasks such as fluorescence, stability, and epistasis [24, 32].

A protein design model should possess four key characteristics: (i) accu-
rate learning of the sequence-function relationship, (ii) generative design of
sequences under this learned mapping, (iii) fast and transferable model train-
ing, and (iv) the capacity for unsupervised training over unlabeled sequence
data and semi-supervised retraining over labeled data. The first and second
properties requires a sufficiently expressive and powerful model to learn the
correlated patterns of amino acid mutations responsible for mediating function
and a means to conduct “inverse” design wherein the relationship may be used
to produce sequences with predicted function. Early quantitative structure
property relation (QSPR) / quantitative structure activity relation (QSAR)
models tended to employ hand-crafted sequence featurizations and relatively
simple pseudo-linear model forms that limit the expressive power of the learned
relationship and can require significant user intervention and/or domain knowl-
edge [1]. Moreover, these techniques are typically discriminative as opposed to
generative, meaning that an auxiliary process such as Monte Carlo simulation
or simulated annealing is required to sample sequences from the learned map-
ping [33, 34]. Modern deep learning networks can, in principle, learn amino
acid correlations of all orders to expressively represent the “syntax” of the
sequence-function mapping and particular architectures can be made inher-
ently generative. The third property is important to enable efficient training
of frequently large and expensive neural network models and amortization of
expensive training via transferability to multiple protein families. The fourth
property is particularly germane to protein engineering applications where the
vast size of protein sequence space and time and labor costs of experimental
assays mean that the volume of labeled data points (i.e., sequences anno-
tated with experimental measurements of the desired function) tends to be
eclipsed by unlabeled data (i.e., unannotated sequences). The initial round of
a typical engineering campaign may begin with no labeled sequence data and
the first task for the data-driven model is to prospectively identify promising
sequences for experimental testing. Accordingly, it is desirable for a model to
admit training in a fully unsupervised manner and subsequent updating in a
semi-supervised fashion.
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Based on these desired criteria, a number of deep learning architectures
have been employed for data-driven protein design. Two approaches in par-
ticular have received substantial attention: variational autoencoders (VAEs)
[15, 16, 20, 21] and transformer-based models [24–31, 35]. VAEs are deep gen-
erative models comprising two consecutive neural networks [36, 37]: an encoder
compresses the high-dimensional sequence data into a low-dimensional latent
space that is then passed to a decoder whose task is to reconstruct the input
sequences as the output of the network. The VAE is trained by variational
inference to minimize a loss function that ideally balances reconstruction accu-
racy and regularization of the latent space under a prior distribution [36–38].
The loss function can also be augmented with a semi-supervised prediction
head that regresses the assayed function of (some fraction of) the training
sequences that have been subjected to experimental measurements [39–41].
This functionality enables iterative semi-supervised re-training of the net-
work after conducting experimental synthesis and testing of novel synthetic
sequences to update the model with data from non-natural regions of sequence
space and also sculpt and induce functional gradients in the learned latent
space [20]. The latent space serves as an information bottleneck that furnishes
a projection of the sequences onto a low-dimensional manifold spanned by
a small number of correlated patterns of amino acid mutations (i.e., “design
rules”) that underpin the sequences in the training data. Annotation of the
latent space by phylogenetic or phenotypic properties frequently reveal dimen-
sions within the latent space to be correlated with phylogenetic evolution
and/or protein function [15, 20]. The interpretable low-dimensional embedding
is extremely valuable in both understanding and interpreting the distribution
of sequences in the training data and, crucially, in providing a smooth, con-
tinuous, low-dimensional embedding to guide interpolative or extrapolative
generative decoding of novel sequences designed to optimize desired protein
functions [15, 20]. Despite these attractive properties, VAE models frequently
necessitate that sequences be provided as fixed length vectors, which requires
sequences to be arranged within multiple sequence alignments (MSAs) [42].
Although MSAs can convey predictive advantages in structure prediction [24],
they can be laborious to construct, introduce biases in the placement of gaps,
require updating in the face of novel sequence data, and limit applications to
homologous families – families of proteins with a common evolutionary origin
– that admit an alignment, thereby frustrating the transferability of models
between families or as generic models for arbitrary proteins. This limitation
to homologous families and fixed-length data can be alleviated through the
use of convolutional or recurrent layers to featurize protein families prior to
dimensionality reduction into the latent space [17], although this can present
challenges in learning long-range mutational correlations.

Transformers are a deep learning architecture using the attention mecha-
nism to learn many-body and long-range correlated patterns by self-supervised
training commonly employing a masked language modeling objective [43]. A
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primary motivation for the development of these models was to solve the van-
ishing gradient problem that plagues learning of long-range correlations within
recurrent neural network architectures while preserving the possibility of oper-
ating on variable length sequence data and auto-regressive decoding. These
architectures occasioned a new generation of large language models (LLMs)
that excel at natural language processing (NLP) tasks [44] and underpin a
number of protein language models (pLMs) for protein functional predic-
tion and design [29, 30, 35]. The high-level structure of a typical transformer
employs an encoder block comprising a stack of self-attention layers incorpo-
rating position-dependent encoding to learn the correlated patterns of amino
acid mutations defining the “syntax” of the protein sequence data within a
latent space embedding. The latent space embedding may then be used either
as an expressive featurization for high-accuracy downstream functional pre-
diction tasks or, similar to a VAE, as a conditioning input for a decoder stack
to generatively decode synthetic protein sequences [24, 32, 45]. Transformers
are not limited to fixed length data, thereby dispensing with the requirement
for MSAs and enabling training of generic pLMs over millions or billions of
(non-homologous) protein sequences residing in large public databases such as
UniProt [46] and BFD [47, 48]. This opens up the possibility for model trans-
ferability wherein a generic model is applied to a particular protein engineering
task possibly after some limited fine tuning [25]. Sequence generation can also
be conditioned on control characters or partial sequences to guide synthetic
protein design [27, 49]. The dimensionality of the fixed-length latent space of
typical transformer-based pLMs is (n × d), where n ≈ 512 is a typical maxi-
mum sequence length that can be accommodated and d = 1024 is a typical per
token latent space dimensionality. The exceedingly high latent dimensionality
is an inherent facet of transformer models that sacrifices easy interpretabil-
ity of phylogeny and functional patterns and frustrates conditional generative
design of synthetic proteins within particular regions of the latent space guided
by functional gradients. Training is also typically very expensive with typical
pLMs containing billions of trainable parameters that make even fine tuning
an expensive endeavor.

In this work, we introduce the Protein Transformer Variational AutoEn-
coder (ProT-VAE) as a model that blends the relative merits of VAEs and
transformers to achieve all four of the desired criteria outlined above. The
high-level architecture of the model can be conceived as sandwiching a VAE
between the encoder and decoder stacks of a transformer pLM. This archi-
tecture is enabled by the capacity of the transformer to operate on variable
length data but furnish fixed-length latent representations. These representa-
tions can be conceived as expressive featurizations of protein sequences that
serve as the input to the VAE. Within this sandwich model, the interface
between the exterior transformer and the interior VAE is mediated by stacks of
1x1 convolutions acting as dimensionality reduction layers that compress and
decompress the transformer latent space representation for processing by the
VAE. The transformer and compression/decompression modules are generic,
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non-family specific networks that are trained over millions or billions of pro-
tein sequence training examples. The VAE is a lightweight network that is
trained anew for each particular homologous protein family that is the subject
of a design or engineering task. Training of the inner VAE for each specific
family is fast, and is the only non-transferable component of the architec-
ture. The primary hypothesis underpinning the ProT-VAE network is that
homologous protein families lie on low-dimensional manifolds of substantially
lower dimensionality than that of the transformer latent space, and that this
space can be compressed and decompressed within a VAE to furnish a low-
dimensional latent space suitable for interpretation, annotation, and guided
generative design. The convolutional layers perform partial compression/de-
compression in a generic, non-family specific manner, and the family-specific
VAE performs the remaining compression/decompression into and out of the
family-specific latent space. Essentially, the ProT-VAE thereby combines the
properties of transformers as generic, transferable, and powerful featurizers
capable of learning long-range correlations and operating on variable length
sequence data, with the capacity of VAEs to furnish low-dimensional latent
embeddings to guide generative sequence design and which can be quickly and
iteratively retrained in an unsupervised or semi-supervised fashion [45]. We
construct and train the ProT-VAE model using the NVIDIA BioNeMo frame-
work and demonstrate its capacity as a powerful, extensible, and lightweight
model for data-driven protein design in retrospective computational prediction
tasks and prospective design of novel functional proteins that are subjected to
experimental synthesis and testing.

2 Results and Discussion

2.1 Prior Art

Deep networks integrating transformers and VAEs have been previously pio-
neered in the context of a number of application domains. Wang and Wan
developed the Transformer-Based Conditioned Variational Autoencoder (T-
CVAE) wherein a VAE was used to learn a distribution over story plots
and serve as a conditioning variable for the transformer decoder in story
completion tasks [50]. Jiang et al. developed the Transformed Variational
AutoEncoder by combining the Music Transformer and Deep Music Analogy
to develop a model capable of learning long-range dependencies within musi-
cal melodies, furnish interpretable embeddings via a disentangling conditional
VAE, and a means to transfer melody and rhythm between contexts [51]. Li
et al. and Park and Lee employed, respectively, pre-training and fine tuning
approaches to mitigate posterior collapse in a transformer VAE model for text
[52, 53]. Arroyo, Postels, and Tombari proposed the Variational Transformer
Network (VTN) as a synthesis of self-attention encoders and decoders within
a VAE architecture for layout detection and generation [54]. Henderson and
Fehr employed VAEs as an information bottleneck regularizer for transformer
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embeddings and used this model to embed and generate text within a nonpara-
metric space of mixture distributions [55]. Our work is most closely related
to the recent work of Castro et al., who introduced the Regularized Latent
Space Optimization (ReLSO) approach for data-driven protein engineering
[40]. The jointly trained autoencoder (JT-AE) architecture underpinning this
approach comprises a transformer encoder, low-dimensional projection into a
latent space bottleneck, 1D convolutional neural network (CNN) decoder, and
fully-connected network to predict function from the latent space embedding.
The ProT-VAE introduced in the present work shares similarities with the
ReLSO approach in the use of a transformer-based featurization and subse-
quent compression of this encoding into a low-dimensional latent space, but
ProT-VAE is distinguished by its use of an attention-based decoder stack for
sequence generation to efficiently learn long-range correlations, its use of a
transferable encoder and decoder such that the lightweight VAE is the only
model component that requires retraining for each protein engineering task, the
capacity for unsupervised/semi-supervised training that does not require all
sequences to have attendant experimental measurements, and demonstration
of the technique in wet lab testing of synthetic protein sequences.

2.2 Architecture of ProT-VAE

Our proposed ProT-VAE model fundamentally behaves as a variational
autoencoder that operates directly on unaligned sequences of a homologous
protein family to yield a low-dimensional, generative, and organized latent
space from which new proteins with desired properties can be generated. A
schematic of the ProT-VAE architecture is given in Fig. 1. The architecture
has three key components or blocks for encoding and three for decoding.

Fig. 1 Overview of the ProT-VAE model architecture. A large language model encoder and
decoder serve as the outermost blocks for a VAE. Unaligned protein sequences are first fed
into a pLM encoder. The resulting large hidden states are efficiently compressed into a much
more compact representation that still retains all of the information using a dimensionality
reduction block composed mainly of a series of 1×1 convolutions. This reduced representation
is finally fed into a series of fully connected layers ending in a low-dimensional bottleneck.
The reduced dimensions are expanded the same way in reverse during the decoding process
to reconstruct unaligned protein sequences. The pLM and convolutional compression/de-
compression reduction layers are trained on large libraries comprising millions of protein
sequences whereas the VAE is trained on specific families for each particular design task.
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The first block is a pretrained transformer-based T5 encoder and decoder
model referred to as ProtT5nv. ProtT5nv is readily available in the NVIDIA
BioNeMo framework, currently available under early access and planned for
future open source release [56, 57]. The model has 12 layers, 12 attention heads,
a hidden dimension of 768, and 198M parameters. Pre-LN layer normalization
and GeLU activation are used throughout the model. Additionally, encoder
embeddings and decoder projections to logits are shared in this architecture.
The model was trained with a maximum input sequence length of 512 and
a masking probability of 15%. Unsupervised mask prediction was used as a
training objective. Dropout was set to 0.1 during training.

ProtT5nv was trained starting from a T5 model pretrained on NLP data.
Parameters of all layers from the NLP-pretrained T5 model, except for encoder
and decoder embeddings, were used to initialize the ProtT5nv models weights.
The original NLP-pretrained T5 model had a dictionary of 29,184 tokens,
while the ProtT5nv model only required 128 tokens, including 96 sentinel
tokens. ProtT5nv encoder embeddings were therefore initialized with 128 first
encoder embedding vectors from the NLP-pre-trained T5 model. Then, decoder
projections to logits were tied to encoder embeddings.

After initialization, the model was further trained with protein sequences
from UniRef50, release 05/2022 [58]. Protein sequences longer than 512 amino
acids were removed, resulting in approximately 46M samples. The sequences
were randomly split with 4.35K in validation, 875K in test, and the remaining
in train. ProtT5nv model was trained using data parallelism on 224 V100
GPUs for 58 epochs (approximately 1M iterations) using a micro-batch size
of 12 protein sequences per GPU. Inverse square root annealing was used as
a learning rate scheduler, with a minimum learning rate of 0.0 and 10000
warmup steps. Fused Adam optimization was used with parameters β1 = 0.9,
β2 = 0.999, and weight decay=0.01.

The second block is a generic dimensionality reduction block that serves to
efficiently compress the ∼300,000-dimensional transformer hidden state into a
more parsimonious intermediate-level representation. These intermediate lay-
ers are also pretrained on large protein databases and do not require significant
changes per protein family. For this work, these layers were pretrained using
a mean squared error (MSE) reconstruction objective on Uniprot. This block
consists of several stacks of dimensionality reduction layers, where each layer
comprises (i) 1×1 convolutions, (ii) LayerNorm, (iii) GeLU activations, and
the filter size is incremented at each step. In the results presented here, three
layers were used with filter sizes of 512, 256, and 64 in the encoding side and
256, 512, and 768 in the decoding side. These layers serve as a generic dimen-
sionality reduction which are very parameter efficient, fast to train, and do
not suffer from significant loss in information content. When trained and val-
idated on large datasets of proteins, reductions of 16× or more are possible
without any noticeable degradation of reconstruction quality. In the current
implementation, the full output of the transformer hidden state, including the
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positions corresponding to padding tokens, are compressed to create a resul-
tant 32,768-dimensional intermediate representation serves as a much more
compact starting point for the family-specific VAE layers to operate upon and
allows for better latent space generation with fewer total network parameters.

The third block is a three layer fully-connected maximum mean discrep-
ancy variational autoencoder (MMD-VAE) employing ReLU activations [59]
that takes the flattened output of the dimensionality reduction block and com-
presses it into a protein family-specific, low-dimensional latent space. Due to its
specificity, this network is initialized and trained from scratch for each target
protein family of interest for a particular design task and furnishes the func-
tionally organized, low-dimensional, generative manifold from which synthetic
proteins are designed.

2.3 Training of ProT-VAE

A pretrained ProtT5 was obtained from the previously described BioNeMo
checkpoint. The intermediate dimensionality reduction layers were pretrained
on Uniprot with using Adam optimizer with a learning rate of 0.0001 on
an MSE objective on reconstruction of the full T5 hidden state. T5 layers
were frozen during this pretraining. Family-specific VAE layers were trained
on full, unaligned sequences belonging to a single homologous protein fam-
ily. Sequences were fed in with 15% of positions randomly masked and 20%
of masks corrupted to different amino acids. The training objective was the
reconstruction of the original sequence, optimized using Adam with a learning
rate of 0.0001.

2.4 Latent Representation and Organization

We demonstrate and test ProT-VAE in applications to two protein families:
the Src homology 3 (SH3) protein family involved in diverse signaling functions
within cells, and the phenylalanine hydroxylase (PAH) enzyme that catalyzes
conversion of phenylalanine to tyrosine. We test the capability of the ProT-
VAE model to learn meaningful and interpretable latent spaces organizing
protein sequences by ancestry and function, to make accurate predictions of
protein function from the learned latent space, and to generatively design
novel synthetic sequences with function commensurate or superior to natural
sequences and with high sequence divergences from the natural training data.

2.4.1 SH3

The Src homology 3 (SH3) is a family of small beta folds that mediate protein
signaling within cells by binding to type II poly-proline peptides with sequences
N-R/KXXPXXP-C or N-XPXXPXR/K-C [60, 61]. SH3 domains have evolved
to perform a variety of functions within various organisms by evolving dif-
ferential binding specificities, resulting in a number of distinct paralogs (i.e.,
homologous proteins performing different functions within the same species)
within the SH3 family. Recent work by Lian et al. trained VAEs over an MSA
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of ∼5,300 SH3 homologs to develop a deep generative model for synthetic
SH3 design [20]. The VAE learned an unsupervised three-dimensional latent
space embedding in which the natural sequences demonstrated an emergent
hierarchical clustering by phylogeny and function. The Sho1SH3 domain in Sac-
charomyces cerevisiae (i.e., baker’s yeast) mediates transduction of an osmotic
stress signal by binding a Pbs2 ligand that activates a homeostatic response
to balance the osmotic pressure by intracellular production of glycerol [62].
A high-throughput in vivo osmosensing assay was developed to measure the
relative enrichment of deep sequencing counts of S. cerevisiae Sho1SH3 knock-
outs into which mutant SH3 genes designed by the VAE were transformed.
The normalized relative enrichment (r.e.) is shown to quantitatively report on
the binding free energy of the mutant SH3 with the Pbs2 ligand. The assay
demonstrated that natural Sho1SH3 orthologs reside within a localized cluster
within the VAE latent space and generative design of mutant sequences in the
vicinity of this cluster conferred equal or superior high osmolarity protection
to wild type Sho1SH3. As a first demonstration of the ProT-VAE model we test
its capacity to learn interpretable latent space embeddings of the SH3 family
organized by phylogeny and function without the need for an MSA. The infer-
ence of phylogenetic and functional relationships within a learned latent space
is a pre-requisite to subsequent data-driven functional protein design.

2.4.2 Functionality

We fine-tune the inner two VAE layers of the ProT-VAE model on the SH3
dataset reported in Ref. [20] employing a 6D latent space. The results are dis-
played in Figure 2. The latent space is plotted in 2D projections in three panels,
colored by sequences with high r.e. scores. The cutoff based on the dataset
is sequences with a normalized r.e. > 0.6. Based on the colored projections
in Figure 2A, the high activity sequences are clustered in all dimensions. We
featurize the activity into a binary dataset of high and low activity. Using the
binary label, we evaluate the generative potential of the model. Due to the low
number of high activity sequences in the dataset as can be seen from Figure
2B, the model has a low average reconstruction of the validation sequences.
Using the latent space embedding and the binary labels, a logistic regression
was trained via 5-fold cross validation. The results of the regression are shown
in the receiver operating characteristic (ROC) curve in Figure 2C. The ProT-
VAE slightly outperforms the MSA-based VAE model in predicting functional
performance with an AUC of 0.98 compared to 0.95. This result validates
the capacity of the ProT-VAE model to accurately predict protein function
without the requirement for an MSA.

2.4.3 Phylogeny

In addition to the activity benchmark, we seek to reproduce the phylogenetic
separation within the latent space previously reported in the alignment-based
VAE model [20]. At first glance, there was shown to be no correlation between
phylogeny and latent space encoding, however, this was actually shown to
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Fig. 2 ProT-VAE organizes the SH3 family by functional activity without an MSA. A)
Two-dimensional projections of the latent space are shown colored by normalized relative
enrichment (r.e.), where darker points correspond to more active sequences. Note the cluster-
ing of these sequences in all three projections. B) Reconstruction strength of SH3 sequences
characterized by activity. The distributions for each classification are represented by violin
plots separated into those in the training set (bottom-half in blue) and those in the valida-
tion set (top-half in green). The number of sequences within each classification and dataset
split are printed on the left of the plot. Dashed lines correspond to the 25%, median, and
75% quartile ranges moving from left to right. C) Prediction of functionality via latent space
trained classification model. A logistic regression classifier was trained via 5-fold cross vali-
dation, using the latent space coordinates and the binary activity labels. The resultant ROC
of the classifier is shown, demonstrating that the latent space is organized such that protein
functionality is localized within the latent space. The green solid line corresponds to the
ProT-VAE model, the blue dashed line corresponds to the previous MSA-based VAE model,
and the black dashed line is the null hypothesis. In the legend, we show the respective AUC
scores of each of the classifiers.

be the result of a hierarchical organization: the model separates by paralog
group, and then phylogeny is separated within each paralog cluster. We seek to
reproduce the same results with ProT-VAE to show the parity between MSA-
based and MSA-free methods (Figure 3). In Figure 3A, we demonstrate that
the ProT-VAE model is also unable to visually separate phylogeny between
Asomycota and Basidiomycota in any latent dimension. Given this result, we
seek to establish the same hierarchical effect as shown in the MSA-based model.
In Figure 3B, we show that there is clear qualitative clustering of the paralog
groups of the SH3 family between Abp1, Rvs167, Sho1, and Bzz1. From here,
we examine the capability of the model to separate phylogeny within each par-
alog. In Figure 3C, we separate the Sho1 paralogs by phylogeny, now noting a
key separation, especially in the first two latent dimensions, just as has been
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shown previously. We show the ability of the model to cluster other annotated
paralog groups by phylogeny in Figure A1. The capacity of ProT-VAE to learn
functional and phylogenetic separation within the latent space without the
need for MSAs demonstrates its capacity to learn the correlated patterns of
amino acid mutations underpinning the ancestral history and functional perfor-
mance of sequence ensembles, and opens the door to alignment-free generative
design and engineering of novel synthetic proteins. We now assess the perfor-
mance of the model in these tasks in the context of design of a therapeutic
protein.

2.5 PAH

To further evaluate the ProT-VAE model, we examine a second protein
family with therapeutic properties. In particular, we consider the family of
aromatic amino acid hydroxylases (AAAH), specifically phenylalanine hydrox-
ylase (PAH). Human PAH (hPAH) is an enzyme that catalyzes the catabolism
of one amino acid, phenylalanine, into another, tyrosine, by hydroxylation of
the Phe side chain [63]. This reaction is critical in eliminating surplus pheny-
lalanine and producing tyrosine as an essential precursor for the production
of hormones, neurotransmitters, and pigments. Starting from a human PAH
variant, 2PAH [64], a psiBLAST was run to find a dataset of homologous pro-
teins, resulting in a dataset of 20,000 sequences. Using annotations from the
non-redundant protein database, the dataset was charactized both by sub-
strate specificity and phylogeny. To effectively test the encoding strength of
the ProT-VAE, we fine-tuned the inner two VAE layers of ProT-VAE under
an 80-20 training-validation split. We project all sequences into a 6D latent
space for evaluation.

2.5.1 Substrate Specificity

Our first task for the model is testing its encoding strength with respect to
organizing the substrate specificity annotations of the sequences. In Figure 4A,
the latent space is shown in two-dimensional projections, colored by substrate
specificity. From the figure, we observe good separation and clustering of the
most labeled functional substrates of the AAAH family: tryptophan, pheny-
lalanine, tyrosine, and henna. To test the generative aspect of the model, we
look at the percent identity of reconstructed sequences. To evaluate this, we
pass sequences through the encoder of the model and then decode from the
latent space, calculating the percent identity between the initial sequence and
the decoded sequence. We show the distributions of reconstruction by data split
and substrate in Figure 4B, along with associated counts in each split. In these
distributions, we note that there is a strong parity between the training set and
validation set in reconstruction strength. For example, henna hydroxylation
enzymes consist of the smallest amount of proteins (∼ 1%) yet the validation
fraction reconstruction is comparable to the training set median and both are
above 90%. Using the latent space encoding, we trained a k-nearest neighbors
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Fig. 3 ProT-VAE hierarchically organizes SH3 family first by paralog group and then by
phylogeny. A) Two-dimensional projections of the latent space are shown colored by two
phylogenetic groups, Ascomycota and Basidomycota with no apparent organization. B) Two-
dimensional projections of the latent space colored by paralog groups (Abp1 in blue, Rvs167
in orange, Sho1 in green and Bzz1 in yellow) exhibit strong clustering. C) Considering just
the Sho1 paralog group, we then color by phylogeny again and observe good separation of
Ascomycota and Basidomycota within this paralog group. Analogous plots for the other
paralog groups are presented in Figure A1.

classifier with k=5 and five-fold cross-validation. In Figure 4C, we show the
quantitative separation of the latent space embedding via a confusion matrix
of the classifier trained on the embeddings. Despite the unbalanced class labels,
the model is able to both generate these sequences with high reconstruction
accuracy. In addition, we note that with unsupervised learning, the model is
also able to predict the substrate specificity with high accuracy based on the
learned functional organization of the latent space.
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Fig. 4 ProT-VAE organizes the AAAH family by function without needing an alignment.
A) Two-dimensional projections of the latent space are shown colored by substrate specificity.
B) Reconstruction of AAAH family sequences characterized by substrate specificity. The
distributions for each classification are represented by violin plots separated into those in
the training set (blue) and validation set (green). The number of sequences within each
classification and dataset split are printed on the left of the plot. Dashed lines correspond
to the 25%, median, and 75% quartile ranges moving from left to right. C) Prediction of
functionality via latent space trained classification model. A k=5-nearest-neighbors classifier
was trained via five-fold cross validation, using the latent space coordinates. The resultant
confusion matrix of the model is shown, demonstrating that the latent space is organized
such that protein functionality is localized.

2.5.2 Phylogeny

While prediction functionality of the PAH protein is of importance, there are a
myriad of phenotypes associated with each protein in the dataset. A key task in
the design of therapeutics, for example, is reduction of immunogenic responses.
In this vein, it is necessary to investigate the predictive capability of the model
over multiple tasks, much in the same way that language models are evaluated
on general benchmarks such as GLUE. [65] We break down the AAAH dataset
by phylogeny at the phylum level and, using the same latent space, annotate
the embedding by phylogeny. The results are displayed in Figure 5. Similar
to the substrate specificity results, we observe good clustering the of the top
phylum labels (Figure 5A). In addition, we see high reconstruction accuracy of
all classes, even though there is a substantial imbalance across the class labels
(Figure 5B). Such a result is encouraging for the generative potential of ProT-
VAE for the de novo design of proteins with specific functionality for a specific
host. This is exceptionally useful in, for example, the potential humanization of
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proteins for therapeutics with specific activity or specificity. We also note that
by training another k=5-nearest neighbors classifier on the phylum labels with
five-fold cross validation, we achieve high prediction accuracy (Figure 5C).
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Fig. 5 ProT-VAE organizes the AAAH family by phylogeny without needing an align-
ment. A) Two-dimensional projections of the latent space are shown colored by phylum
characterization. B) Reconstruction of AAAH family sequences characterized by phylum.
The distributions for each classification are represented by violin plots separated into those
in the training set (blue) and validation set (green). The number of sequences within each
classification and dataset split are printed in the left of the plot. Dashed lines correspond to
the 25%, median, and 75% quartile ranges moving from left to right. C) Prediction of phy-
logeny via latent space trained classification model. A k=5-nearest-neighbors classifier was
trained via five-fold cross validation, using the latent space coordinates. The resultant con-
fusion matrix of the model is shown, demonstrating that the latent space is locally organized
such that protein phylogeny is localized in the learned latent space.

2.5.3 Latent Space Interpolation

A hallmark of a smooth latent space suitable for optimization and generative
design is sensible interpolations. To test the smoothness of these latent spaces
we performed two separate interpolations: one between similar phylogeny but
different substrates, and one between different phylogenies acting on the same
substrate. The substrate path was traversed between the 2PAH human PAH
(hPAH) and a human tyrosine hydroxylase (hTyrH), while the phylogeny path
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Fig. 6 Traversal in latent space smoothly transitions between sequences. A) Two-
dimensional projections of the spherical interpolation in the latent space. There are two
paths represented: the phylogeny path, in red, which traverses between a human PAH
(hPAH) represented by a white star and a bacterial PAH (bacPAH) represented by a red
star, and a substrate specificy path, in black, which traverses between the same hPAH and
a human tyrosine hydroxylase (hTyrH) B) A graph showing the steady transition from the
first sequence into the second as the interpolation proceeds for both paths. Circles represent
the percent identity of the sequences in the path with reference to the start and triangles
represent similarity to the end sequence.

was between the same hPAH and a flavobacteriacaea PAH sequence (bacPAH).
We interpolate 50 points with spherical linear interpolation (SLERP) [45] and
show the results of both interpolations in Figure 6.

In Figure 6A, we visualize both interpolations in the latent space, col-
ored by interpolation path. Interestingly, there is a longer traversal path
for the phylogeny interpolation than for substrates, which is also correlated
with larger sequence similarity changes. At each point, we reconstruct the
sequence through the decoder to evaluate the sequence similarity of these novel
sequences (Figure 6B). Despite unique paths of different lengths, there is a
smooth transition within both paths that exhibits no sharp transitions. It is
also of note that the phylogeny interpolation covers a range of 85% difference in
sequence, and yet still results in a smooth interpolation. With this result we are
encouraged not just by the organization of the ProT-VAE model to organize
information with its embedding, but also to generate a smooth representation
of unique sequences for generative design and experimental testing.
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2.5.4 Protein Design

Given the strong predictive performance of the model, we now proceed to
evaluate its potential for de novo sequence design. Specifically, we test the
capabilities of ProT-VAE to furnish interpretable and generative latent spaces
by performing generative design of synthetic human-like PAH proteins for
experimental evaluation with a plate-based assay. Given the strong predictive
performance of the model, we now proceed to evaluate its potential for de novo
sequence design. Specifically, we test the capabilities of ProT-VAE to furnish
interpretable and generative latent spaces by performing generative design of
synthetic human-like PAH proteins for experimental evaluation with a plate-
based assay. To generate these sequences, we chose a conservative approach
of local sampling around hPAH in latent space by fitting a multi-dimenisional
Gaussian centered around hPAH. We filtered out sequences that were dupli-
cates of natural sequences and imposed a maximum similarity of any generated
sequence to any natural sequence in the training data of 99%. To localize the
generated sequences in both latent space and sequence space, we also placed
a cap on the maximum number of mutations (i.e., substitutions, insertions,
deletions) in the generated sequences away from hPAH of 140 of the 333 wild-
type positions corresponding to a minimum sequence similarity of 58%. Under
these criteria, 190 sequences containing a maximum of 133 mutations away
from hPAH and spanning a range of lengths of 223-339 residues were chosen
for experimental synthesis and testing.

The assay is designed in 96-well plates using a Biotek plate reader to eval-
uate the fluorescence of tyrosine produced over a defined time period. The
efficiency of catalytic conversion is calculate as the maximum velocity of the
reaction, normalized by enzyme concentration in the well. The maximum veloc-
ity is calculated by taking the derivative of the curve and finding where it is
at a maximum. These values are then normalized by the average hPAH veloc-
ity and converted into a fold over wild-type (FOWT) measurement, for easy
comparison. Full details of the assay are provided in the Methods. We show
the activities of the designed sequences in Figure 7.

In Figure 7A, we show the sequences annotated by their relative activity,
FOWT, projected into the latent space. The gray points represent the training
data to show the overall latent space projections. In black, we show the inactive
sequences, which occupy the same regions of space as the active. All other
sequences that are active are shown according to the colorbar to the right
of the projections. From the figure, we note that the ProT-VAE model is
capable of MSA-free de novo design of synthetic PAH proteins from a low-
dimensional generative and interpretable latent space. Of the proteins assayed,
69 showed activity and 19 were more active than hPAH, with a maximum
activity increase of 2.5× that of hPAH. In Figure 7B, we show the activities
of the generated sequences as a function of the number of mutations from
hPAH. Additionally, we predicted structures for the highest active variant
and the most mutated variant that showed activity using AlphaFold [11]. The
structural models suggest that the synthetic mutants preserve the native fold
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Fig. 7 Generative design of ProT-VAE. There were 190 proteins locally designed around
human PAH (hPAH) for experimental testing. A) The latent space organized by activity in
fold-over-wild-type (FOWT). Color corresponds to activity; sequences in black are inactive.
hPAH is indicated by a gold star. The training data for the model is shown in gray. B)
Activity distribution of the designed sequences as a function of similarity to hPAH. We
show similarity as number of mutations. We present the predicted structures generated by
AlphaFold of the highest-activity synthetic mutant (teal), and the most highly mutated
functional synthetic mutant (purple), each aligned with the natural hPAH (green).

of the wild-type natural hPAH despite the ProT-VAE model being furnished
no structural information. While the majority of the active sequences are very
similar (< 30 mutations), we do note that the ProT-VAE model is capable
of generating highly mutated sequences (> 100 mutations, highest active at
130 mutations) that are still functional. This dynamic range of generative
design is highly non-trivial from a protein engineering standpoint and shows
the engineering power that ProT-VAE provides. We are encouraged by the
ProT-VAE model, not just for its embedding strength, but the ability of the
model to generate novel, highly active, and diverse sequences.

3 Conclusions

In this work we introduce ProT-VAE, an accurate, generative, fast, and trans-
ferable model of the sequence-function relationship for data-driven protein
engineering. By blending the desirable features of transformers and VAEs, the
model admits alignment-free training in an unsupervised or semi-supervised
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fashion and furnishes interpretable low-dimensional latent spaces that facil-
itate understanding and generative design of functional synthetic sequences.
The ProT-VAE model comprises a VAE to distill task-specific information from
generally pretrained, attention-based transformer encoder and decoder stacks
with the aid of intermediate compression/decompression blocks. Pre-trained
transformer encoder and decoder stacks are taken from the 198 million param-
eter ProtT5 model trained over approximately 46M unique protein sequences
within the UniRef50 (release 05/2022) database after clustering, truncation,
and splitting. This model is made available within the NVIDIA BioNeMo
framework [56, 57] and will be open-sourced in future releases. The model
is, however, not dependent on the particular choice of encoder and decoder.
We perform in-house training of generic compression/decompression blocks to
map back and forth between the ∼300,000-dimensional ProtT5 latent space
and a 32,768-dimensional compressed representation that serves a fixed-length
input to a task-specific VAE. The transformer and compression/decompres-
sion stacks are transferable and generic models that need only be trained
once over large libraries of diverse protein sequences and can be conceived of
as furnishing expressive fixed-length featurizations of arbitrary proteins from
unaligned sequences. Only the lightweight VAE requires training anew for each
protein engineering task and furnishes a smooth, low-dimensional latent space
that furnishes interpretable understanding and a springboard for conditional
generation of synthetic protein sequences with engineered function.

We validate ProT-VAE in applications to two different protein families: SH3
and PAH. We show that latent space organization is an excellent predictor of
both phylogeny and function in both systems, allowing design of proteins with
desired substrate specificity. We then show that sequences smoothly transition
in latent space in interpolations performed on PAH. Finally, we design and
experimentally validate new PAH sequences with more than 100 mutations
and up to 2.5× increase in activity over the human PAH.

These tasks show that the learned latent space in the bottleneck layer at the
heart of the network naturally organizes protein sequences according to ances-
tral history and biological function, exposes functional gradients in annotated
sequences, supports high-accuracy regression models to predict the function of
novel sequences, and enables the design of synthetic sequences by interpola-
tive decoding and conditional generation along latent space pathways between
natural sequences. Novel proteins generated by ProT-VAE exhibit substantial
sequence diversity from any natural sequences in the training data yet possess
high functionality as verified by experimental synthesis and functional assays.

ProT-VAE represents a powerful new architecture for data-driven protein
engineering that can be deployed to generate synthetic proteins possessing high
novelty and functionality for arbitrary design tasks. The only requirement is
the availability of sufficient training data – typically ensembles of natural pro-
tein sequences – for stable training of a lightweight task-specific VAE to furnish
a robust latent space embedding. Importantly, the model does not rely on the
construction of multiple sequence alignments by using robust and expressive

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the24, 2023. 

this version posted January; https://doi.org/10.1101/2023.01.23.525232doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525232


Springer Nature 2021 LATEX template

20 ProT-VAE

attention-based featurizations to eliminate the time, labor, and bias associ-
ated with alignment construction and efficiently learn of long-range mutational
correlations. We have demonstrated ProT-VAE in downstream functional pre-
diction and data-driven design of novel functional sequences after training
the model on natural libraries. The model is, however, immediately deploy-
able within subsequent rounds of a machine learning-guided directed evolution
(MLDE) campaign by semi-supervised retraining of the VAE blocks on the
synthetic sequences and their attendant functional assays [1, 4, 33, 35, 45, 66–
71]. By virtue of the NVIDIA BioNeMo framework upon which the model is
constructed, we can take advantage of pre-trained transformer encoder and
decoder stacks and perform efficient retraining of the VAE for typical protein
engineering tasks in just 12-24 GPU-h on commodity NVIDIA A100 GPUs,
although inference and even retraining of the VAE can be performed on GPUs
with as little as 10 GB of memory.

We envisage exciting applications of the ProT-VAE model as a power-
ful tool for a panoply of protein engineering and design applications. The
transformer/VAE hybrid architecture is extremely powerful and generically
extensible. We can conceive of numerous potential innovations on this architec-
ture by incorporating alternative transformer encoders/decoders and different
VAE loss functions and training protocols. In particular, we anticipate that
the model may be straightforwardly applied to identification, conditional
generation, or design tasks in diverse fields simply by switching out the
encoder/decoder blocks for transformer models pre-trained over, for example,
nucleic acids, synthetic polymers, small molecules, text, speech, music, or other
sequence-based data that reside on low-dimensional manifolds.

4 Methods

4.1 Experimental measurement of PAH activity

4.1.1 Methods

The insert was ordered from a gene fragment vendor. The 10x T4 DNA Ligase
Buffer, Bsal-HF v2, and T4 DNA ligase were purchased from New England
Biolabs. The molecular grade water was purchased from Corning. Mix & Go
E. Coli Transformation Kit and Buffer Set was purchased from Zymo research.
Aera Seal was purchased from Excel scientific. LB Broth was purchased from
Gibco, and S.O.C. medium from Invitrogen, and 10x PBS was purchased from
Gibco, Solulyse from AMSBIO, Lysonase from Novagen.

4.1.2 High-Throughput (HT) Preparation and Screening

Highly competent BL21(DE3) cells expressing chaperone pGro7 (BL21(DE3)-
pGRO7) were prepared in-house using a kit from Zymo Research (kit #
T3002). Briefly, 2 ml of an overnight culture of BL21DE3-pGRO7 in LB con-
taining 12.5 µg/ml chloramphenicol was used to start a 200 ml culture in Zymo
Broth (kit # T3002) containing 12.5 µg/ml chloramphenicol. The culture was
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grown at 300 rpm, 30C until OD600 0.4-0.6 (∼4-5 hours) and then immedi-
ately plunged into an ice bath with continuous mixing of the culture of the
ice for 3 minutes. The flask was left on ice for 7 more minutes, and the cen-
trifuged in 4x50 ml ice-cold sterile tubes at 4 ◦C for 10 minutes at 2500×g.
The supernatant was discarded, and each pellet was resuspended in with 5 ml
ice-cold 1X Wash Buffer by gently tapping. The resuspended pellets were then
centrifuged at 4 ◦C for 10 minutes at 2500×g, the supernatant removed, and
then each pellet resuspended with 5 ml 1X Competent Buffer. The cells were
combined into a single tube and kept on ice until needed.

The 190 PAH protein sequences designed using the ProT-VAE were ordered
as gene fragments. The sequences were cloned into a complementary mScarlet-
containing expression vector using golden-gate assembly. Briefly, a 10 µL
reaction containing 0.5 µL plasmid backbone (100 ng/µL), 3 of the gene frag-
ment, 1 µL of 10x T4 DNA ligase buffer, 0.5 µL of Bsal-HF v2, 0.5 µL T4 DNA
Ligase, and 4.5 µL molecular grade water (molar ratio of 2:1 insert:vector) was
prepared and then cycled 60 times, keeping the temperature at 37 ◦C for 5
minutes, and then reducing the temperature to 16 ◦C for 5 minutes. 2 µL of the
assembled plasmids were then added to 40 µl of freshly prepared competent
cells which were pre-aliquoted into in an ice-cold Biotix 96-square V-bottom
deep well microplate. The plate was sealed with a breathable plate seal and
incubated on ice for 10 minutes. Following incubation, 100 µl/well of SOC was
added to cells and incubated in an Infors shaker for at 37 ◦C, 600 RPM, 80%
humidity. After a 1 hour incubation 360 µl of LB containing 6.25 µg/ml chlo-
ramphenicol and 100 µg/ml carbenicillin was added to each well and incubated
in the Infors shaker at 30 ◦C, 900 RPM, 80% humidity for 20-22 hours.

4.1.3 HT Expression

We make our autoinduction media in-house with the attached protocol. First,
30 µL of the LB-grown transformation mix was added to 570 µL of autoinduc-
tion media (25 mM KH2PO4, 47 mM Na2HPO4, 70 mM tryptone, 0.5% yeast
extract, 30 mM NaCl, 2.8 mM glucose, 5.84 mM lactose, and 0.6% glycerol)
supplemented with 6.25 µg/ml chloramphenicol and 100 µg/ml carbenicillin
that had already been aliquoted to each well of a Biotic 96-square V-bottom
deep well plate. The plate was covered with an Aera seal and grown for 24
hours at 30 ◦C, 900 RPM, 80% humidity.

4.1.4 HT Chemical Lysis

Cells were pelleted in expression plates by centrifuging at 4000xg for 30 minutes
at 4 ◦C. The supernatant was decanted then plates were sealed with aluminum
plate seals and stored at -80 ◦C for later use. To make lysis solution Solulyse
extraction reagent was supplemented with lysonase (1 µL/ml) and 1 mM Phe,
and then 270 µL of this solution was added to each well of the deep well plate
to lyse the cells. The plate was covered with a silicone seal and briefly vortexed
until all pellets were resuspended. Cells were mixed on an orbital shaker at 900
RPM for 30 minutes at 4 ◦C and then centrifuged for 30 minutes at 6000×g
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at 4 ◦C. 100 µl of lysate was removed and pipetted into a lysate plate for
characterization in the HT Lysate Assay.

4.1.5 HT BioAssay

To measure the PAH activity of the lysates we followed the conversion of
phenylalanine to tyrosine by measuring the fluorescent emission at 304 nm
(ex274nM). Reactions were initiated by transferring 10 µL of the lysate into
the appropriate well of a black Greiner µClear, F-bottom, 96-well microplate
and then adding 240 µL of a reaction solution containing 100 mM HEPES
pH 7.4, 2 mM DTT, 0.6mg/ml Catalase, 10 µM Fe(II)SO4, 75 µM tetrahy-
drobiopterin (BH4) and variable amounts of Phenylalanine. Progress of the
reaction was measured every 40 seconds for 40 minutes and was carried out in
technical triplicate. Upon completion of the assay, the amount of PAH vari-
ant was determined by measuring the fluorescence of mScarlet (ex569/em593)
and comparing the results to a standard curve calculated with in-vitro puri-
fied mScarlet-PAH. Velocities were determined by fitting the reaction progress
curves to polynomials and taking the max first derivative and kinetic param-
eters were determined by fitting the reaction velocities to a modified Hill
equation. The kcat values were determined by normalizing the Vmax to
the amount of enzyme in each well previously determined through mScarlet
fluorescence.
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Appendix A Hierarchical organization of SH3
latent space by phylogeny and
function
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Fig. A1 ProT-VAE hierarchically organizes SH3 family first by paralog group and then by
phylogeny. A) Two-dimensional projections of the latent space of the Abp1 paralog group
separated by phylogeny. B) Two-dimensional projections of the latent space of the Bzz1
paralog group separated by phylogeny. C) Two-dimensional projections of the latent space
of the Rvs167 paralog group separated by phylogeny.
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