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ABSTRACT 

In common with other omics technologies, mass spectrometry (MS)-based proteomics produces 
ever-increasing amounts of raw data, making their efficient analysis a principal challenge. 
There is a plethora of different computational tools that process the raw MS data and derive 
peptide and protein identification and quantification. During the last decade, there has been 
dramatic progress in computer science and software engineering, including collaboration tools 
that have transformed research and industry. To leverage these advances, we developed 
AlphaPept, a Python-based open-source framework for efficient processing of large high-
resolution MS data sets. Using Numba for just-in-time machine code compilation on CPU and 
GPU, we achieve hundred-fold speed improvements while maintaining clear syntax and rapid 
development speed. AlphaPept uses the Python scientific stack of highly optimized packages, 
reducing the code base to domain-specific tasks while providing access to the latest advances in 
machine learning. We provide an easy on-ramp for community validation and contributions 
through the concept of literate programming, implemented in Jupyter Notebooks of the 
different modules. A framework for continuous integration, testing, and benchmarking 
enforces solid software engineering principles. Large datasets can rapidly be processed as 
shown by the analysis of hundreds of cellular proteomes in minutes per file, many-fold faster 
than the data acquisiton. The AlphaPept framework can be used to build automated processing 
pipelines using efficient HDF5 based file formats, web-serving functionality and compatibility 
with downstream analysis tools. Easy access for end-users is provided by one-click installation 
of the graphical user interface, for advanced users via a modular Python library, and for 
developers via a fully open GitHub repository.  
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INTRODUCTION 

 
Increasingly large data sets, combined with exponentially increasing computational power and 
algorithmic advances, are transforming every aspect of science. This is accompanied and enabled by 
developments in open and transparent science. The open-source community has been a particular 
success, starting as a fringe movement to a recognized standard for software development, whose 
value is embraced and adapted even by the largest technology companies. Public exposure supports 
high code quality through scrutiny by developers from diverse backgrounds, while increasingly 
sophisticated collaboration mechanisms allow rapid and robust development cycles. The most 
advanced machine and deep learning research, for example, builds on open-source projects and 
datasets and is itself open-source. These laudable developments reflect the core ideas of science and 
present great opportunities in the ever more important computational fields. 
 
In mass spectrometry (MS)-based proteomics, algorithms and computational frameworks have been 
a cornerstone in interpreting the data, resulting in a large variety of different proteomic software 
packages and algorithms, ranging from commercial, freely available to open source, exemplified by 
and reviewed in (Välikangas, Suomi, and Elo 2017; Chen et al. 2020). Typical computational 
workflows comprise the detection of chromatographic features, peptide spectrum matching, all the 
way through protein inference and quantification (Nesvizhskii, Vitek, and Aebersold 2007; Zhang et 
al. 2020). Advances in (MS)-based proteomics are also being accelerated through the sharing of 
datasets, such as publicly available data on the Proteome Exchange repository (Vizcaíno et al. 2014; 
Deutsch et al. 2017). 
 
Prompted by the developments in the Python scientific environment and in collaborative development 
tools, we developed AlphaPept, a Python-based open-source framework for efficient processing of 
large amounts of high-resolution MS data. Our main design goals were accessibility, analysis speed, 
and robustness of the code and the results. Accessibility refers to the idea of facilitating the 
contribution of algorithmic ideas for (MS)-based proteomics, which is today typically limited to 
bioinformatics experts. We decided on Python because its clear, easy-to-understand syntax, and 
because the excellent supporting scientific libraries make it easier for developers from different 
backgrounds to contribute to and implement new ideas. Using community-tested packages makes the 
codebase more maintainable and robust, allowing us to focus on domain knowledge instead of 
implementation details. We furthermore adopted a recent implementation of ‘literate programming’ 
(Knuth 1984), in which code and documentation are intertwined. Using the nbdev package, the 
codebase is connected to extensive documentation in Jupyter Notebooks in a way that immediately 
explains the algorithmic background, making it easier to understand the underlying principles and 
documenting design decisions for others (Kluyver et al. 2016). With the help of the Numba package 
for just-in-time compilation (JIT) of Python code (Lam, Pitrou, and Seibert 2015), AlphaPept 
achieves extremely fast computation times. Furthermore, we implemented robust design principles 
of software engineering on GitHub, such as continuous integration, deployment and extensive 
automated validation.  
 
Depending on the user, AlphaPept can be employed in multiple ways. A ‘one-click’ installer can be 
freely downloaded for Windows, providing a web server-based graphical user interface (GUI) and a 
command line interface; A Python library that allows re-use and modification of its functionality in 
custom code, including in Jupyter Notebooks that have become a standard in data science and finally, 
in a scalable could environment.  
 
In the remainder of the paper, we describe the functionality of AlphaPept on the basis of nbdev 
notebooks, such as feature finding, peptide identification and protein quantification. We demonstrate 
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the capabilities of AlphaPept on small- and large-scale datasets. Finally, we demonstrate how 
AlphaPept can be utilized as a proteomic workflow management system and how it can be integrated 
with downstream analysis tools such as Perseus or the Clinical Knowledge Graph (CKG), (Santos et 
al. 2020; Tyanova et al. 2016) and we provide an outlook on novel functionality to be incorporated 
soon. 
 
 
 

RESULTS 
 
Overview of AlphaPept architecture - Academic software development is often highly innovative but 
is rarely undertaken with dedicated funding or long term personnel stability. Such constraints have 
successfully been mitigated by collaborative software engineering approaches and the collective 
efforts of volunteers. This is exemplified in state of the art open-source projects such as NumPy 
(Harris et al. 2020) and scikit-learn (Pedregosa et al. 2011). This paradigm has also been taken over 
by relatively recent and highly popular deep learning frameworks like Google’s Tensorflow (Martín 
Abadi et al. 2015) and Facebook’s PyTorch (Paszke et al. 2019) and is thought to lead to increased 
code quality due to community exposure and a large testing audience. Inspired by these 
developments, AlphaPept implements robust design principles of software engineering on GitHub, 
such as continuous testing and integration. For instance, code contributions can be made via pull 
requests which are automatically validated. By making the code publicly available and providing a 
stringent testing environment, we hope to encourage contribution and testing from a diverse 
background while maintaining very high code quality. 
 
Organization in notebooks with nbdev allows us to collect documentation, code and tests in one place. 
This enables us to automatically generate the documentation, extract production code and test 
functionality by executing the notebooks. Furthermore, we extend the notion of unit and system 
testing by including real world data sets on which the overall improvement of newly implemented 
functionality is routinely evaluated. To continuously monitor system performance, summary statistics 
are automatically uploaded to a database where they are visualized in a dashboard.  
 
The advantages of high-level languages generally come at the price of execution speed, especially 
for Python. As a result, this expressive language is often only used as a thin wrapper on C++ libraries. 
In AlphaPept, we make use of the Numba project (Lam, Pitrou, and Seibert 2015), which allows us 
to compile our Python algorithms directly with the industry-standard LLVM compiler (backend to 
most C++ compilers and supercomputing languages such as Julia). This allows us to speed up our 
code by orders of magnitude without losing the benefits of the intuitive Python syntax. Furthermore, 
AlphaPept readily parallelizes computationally intensive parts of the underlying algorithms on 
multiple CPU cores or – if available - Graphical Processor Units (GPUs) for further performance 
gains.  
 
As far as possible, AlphaPept uses the standard, but powerful packages of the Python data analysis 
universe, namely NumPy for numerical calculations, pandas for spreadsheet-like data structures and 
scikit-learn for machine learning (Fig. 1A). Furthermore, we chose the binary, high performance 
HDF5 file format, which is used across scientific areas, including ‘big data’ projects (see below). All 
these packages are platform-independent, allowing deployment of AlphaPept on Windows, Mac and 
Linux computers, including cloud environments.  
 
An integral feature of AlphaPept development are Jupyter notebooks, which have become ubiquitous 
in scientific computing. Using the nbdev package, each part of the MS-based proteomics workflow 
is modularized into a separate notebook. This allows extensive documentation of the underlying 
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algorithmic production code, which is automatically extracted from and synchronized with the 
notebooks. Furthermore, the notebooks capture the background information of each part of the 
computational proteomics workflow, making it much easier to understand the underlying principles. 
We have found this to be an excellent way of developing software, which brings together the typical 
cycle of exploration in notebooks with the production of a robust and tested code base. Figure 1B 
shows an overview of the steps in the analysis of a typical proteomics experiment in AlphaPept 
corresponding to the notebooks. These separate processing steps will be discussed in turn in the 
sections below.  
 
 

 
 
Figure 1: AlphaPept ‘ecosystem’ and Modules  
A AlphaPept relies on multiple community-tested packages. We use highly optimized libraries such as Numba, 
NumPy, CuPy, scikit-learn, SciPy and pandas to achieve performant code. As GUI, we provide a browser-
based application built on streamlit. For data handling, the HDF5 file technology is used. The repository itself 
is hosted on GitHub, the core code is documented in Jupyter Notebooks using the nbdev package. To ensure 
maintainability, packages are continuously monitored for updates via dependabot. New code is automatically 
validated using GitHub actions and summary statistics (timing, identifications and quantifications) are 
uploaded to a mongoDB database and visualized. B All algorithmic code of AlphaPept is organized in Jupyter 
Notebooks. For the key processing steps in the pipeline, such as importing raw data, Feature Finding, FASTA 
processing, Searching, Recalibrating, Scoring, Quantifying and Matching, there are individual notebooks with 
background information and the code.  
 

Highly efficient and platform-independent MS data access – MS-based proteomics or metabolomics 
generates complex data types of MS1 level features, variable length MS2 data and mappings between 
them. Furthermore, data production rates are rapidly increasing, making robust and fast access a 
central requirement. The different MS vendors have their own file formats, which may be highly 
optimized but are meant to be accessed by their own software. We therefore faced the task of 
extracting the raw data into an equally efficient but vendor-neutral format that could be accessed 
rapidly.  

First, AlphaPept needs to convert vendor specific raw files. For Thermo files we created a cross-
platform Python application programming interface (API) that can directly read .RAW MS data 
(pyRawFileReader, Fig. 2a). It uses PythonNET for accessing Thermo’s RawFileReader .NET library 
(Zeng, Wen-Feng 2021, 1), obviating the need for Thermo’s propietory MSFileReader. For 
Windows, PythonNET is available by default as a part of Windows’ .NET Framework. For Linux 
and MacOS, PythonNET requires the open-source Mono library. Although our solution uses stacked 
APIs, loading the spectra of a Thermo .RAW file of 1.6 Gb into RAM takes only about one minute 
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which can be speeded up even more by parallel file processing. Access to Bruker’s timsTOF raw data 
is also directly handled from our Python code, in this case through a wrapper to the external 
timsdata.dll C/C++ library, both made available by Bruker. In parallel with this publication, we 
provide AlphaTims, a highly efficient package to access large ion mobility time-of-flight data through 
Python slicing syntax and with ultra-fast access times (https://github.com/MannLabs/alphatims).  

To accommodate raw data acquired through other vendors, we use Pyteomics (Goloborodko et al. 
2013; Levitsky et al. 2019). This package allows reading mzML and other standard MS data formats 
with Python. Thus, by first converting raw data with external software such as e.g. MSConvert 
(Adusumilli and Mallick 2017), AlphaPept also provides a generic framework for all vendors. 

As a storage technology, we chose HDF5 (Hierarchical Data Format 5), a standard originally 
developed for synchrotron and other extremely large scale experimental data sets, that has now 
become popular in a wide range of scientific fields (Folk et al. 2011). HDF5 has many benefits such 
as independence of operating systems, arbitrary file size, extremely fast accession and a transparent, 
flexible data structure. The latter is achieved by organizing HDF5 files in groups and subgroups, each 
containing arrays of arbitrary size and metadata which describes these arrays and (sub)groups. In the 
last few years, it is also becoming more popular in the field of MS (Wilhelm et al. 2012, 5). AlphaPept 
adopts the HDF5 technology via the Python’s h5py package (Collette 2013).  

As an additional design choice we also store intermediate processing results in the HDF5 container, 
so that individual processing steps can be performed in a modular way and from different computers. 
This enables researchers to quickly implement and validate new ideas within the downstream 
processing pipeline. Thus, for each new sample, AlphaPept creates a new .ms_data.hdf file and for 
each step in the workflow, the file is extended by a new group (Fig. 2b). In this way, the .ms_data.hdf 
file ensures full portability, transparency and reproducibility while being fast to access and with 
minimal storage requirements. For example, the 1.6 Gb Thermo file mentioned above is converted to 
a HDF5 file of 200 MB, all of which can be accessed in a total of 0.2 s (Fig. 2D). 

We next provide functionality for MS data pre-processing, such as centroiding and extraction of the 
n-most abundant fragments, should this not already have happened in the vendor software. MS1 and 
MS2 scans form the two major subgroups in the HDF5 file. As HDF5 files are not optimized for lists 
of arrays with variable length, we convert the many individual spectra into a defined number of arrays, 
each containing a single data type, but concatenating all spectra. These arrays are organized in two 
sets: Spectrum metadata (spectrum number, precursor m/z, RT, etc), where each array position 
corresponds to one spectrum; and spectrum data, where each array position corresponds to a single 
m/z-intensity pair. To unambiguously match the spectrum datapoints to their metadata, an index array 
is created. It is part of the first set of arrays and contains a pointer to the position of the first data pair 
for each spectrum within the second set. The position of the last pair does not need to be stored as it 
is implied by the start position of the next spectrum. Thereby, all m/z values and intensities for each 
spectrum can easily be extracted with simple base Python slicing, while fixing the number arrays 
contained in the hdf container. Loading data from HDF5 to RAMtakes less than a second, effectively 
speeding up data accession more than 300-fold compared to loading the RAW file (Fig. 2d). 
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Figure 2: Highly efficient and platform-independent MS data access 
A MS data from different vendors is imported to an HDF5 container for fast and platform-independent data 
access. To read Thermo data, we provide a Python application programming interface. Bruker data is accessed 
via Bruker’s proprietary DLL. Additionally, generic data can be imported using the Pyteomics package. B The 
output of each processing step is appended to the HDF5, allowing processing in a modular way. C To 
efficiently store MS spectra, multiple spectra of variable length are concatenated, and start indices are saved 
in a lookup table. D HDF5 Accessing times. Loading data from HDF5 into memory takes less than 1s for a 
typical 2h full proteome analysis of a HeLa sample acquired on a Thermo Orbitrap mass spectrometer. 
 
 
Extracting isotope features – Having stored the MS peaks from all mass spectra in an efficient data 
structure, we next determine isotope patterns over chromatographic elution profiles. This 
computationally intensive task is crucial for subsequent peptide identification and quantification. 
MaxQuant (Cox and Mann 2008) introduced the use of graphs for feature finding, which was then 
improved upon by the Dinosaur tools (Teleman et al. 2016) and we also decided to follow this elegant 
approach.  
 
In the first step - called hill building – centroided peaks from adjacent scans are connected. As there 
are millions of centroids, our first implementations using pure Python took several minutes of 
computing time. We subsequently refactored the graph problem and parallelized it for CPUs using 
Numba and CuPy for GPUs, resulting in a 300-fold speed up (about 1s on GPU). Since not every 
user has access to GPUs, AlphaPept employs dedicated Python ‘decorators’, a metaprogramming 
technique allowing a part of the program to modify its another part at compile time to transparently 
switch between parallelized CPU, GPU and pure Python operation.  
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In more detail, AlphaPept refines hills by first splitting them in case they have local minima indicating 
two chromatographic elution peaks (Fig. 3B). Additionally, hills are removed whose elution profiles 
do not conform to minimal criteria, like minimal length and the existence of local minima. To 
efficiently connect hills, we compute summary statistics such as weighted average m/z value and a 
bootstrap estimate of its precision. Hills within retention time boundaries are grouped into pre-isotope 
patterns. To correctly separate co-eluting features, we generate seeds, which we extend in elution 
time and check for consistency with a given charge state, similarity in elution profile and for 
conformity with peptide isotope abundance properties via the averagine model (Senko, Beu, and 
McLaffertycor 1995). This results in a feature (here a possible peptide precursor mass), which is 
described by a table.  
 
Feature finding on the Bruker timsTOF involves ion mobility as an additional dimension. Currently, 
this functionality is provided by a Bruker component, which we linked into our workflow via a Python 
wrapper, and is the only part that is not in natively included as Python code in AlphaPept. Instead, 
this wrapper uses Python’s subprocess module, which can integrate other tools into AlphaPept just 
as easily.  
 
For a typical proteomics experiment performed on an Orbitrap instrument, Figure 3C provides an 
overview of the number of data points from MS peaks to the final list of isotope patterns. Note that 
AlphaPept can perform feature finding separately for each file as soon as it is acquired (described 
below). Furthermore, although described here for MS1 precursors, the AlphaPept feature finder is 
equally suited to MS2 data that occur in parallel reaction monitoring (PRM) or DIA acquisition 
modes. 
 
 

 
 
Figure 3: Extracting isotope features 
A Individual MS peaks of similar masses are connected over the retention time using a graph approach, 
resulting in ‘hills’. Using a native Python implementation, hill extraction takes several minutes. Numba, 
parallelization on CPUs or GPUs reduces hill extraction to seconds. B Extracted hills are refined by splitting 
at local minima and only allowing well-formed elution profiles. C Starting with 20 million points for a typical 
Thermo HeLa shotgun proteomics file, these are connected to approximately one million hills, which increased 
to 1.5 million after hill splitting and filtering. Subsequent processing results in 200,000 pre-isotope patterns 
that ultimately yield 230,000 isotope patterns due to assignment to specific charge states.  
 
 
Peptide spectrum matching – The heart of a proteomics search engine is the matching of msms spectra 
to peptides in a protein sequence database. AlphaPept parses FASTA files containing protein 
sequences and descriptions, ‘digests’ them into peptides and calculates fragment masses according to 
user specified rules and amino acid modifications (Fig 3D). We again use HDF5 files, which enables 
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efficient storage of fragment series despite their varying lengths. Generation of this database only 
happens once per project and only takes minutes for typical organisms and modifications. From a 
FASTA file of the human proteome, typically five million ‘in silico’ spectra of fragment masses are 
generated. In case no enzyme cleavage rules are specified or for open search with wide precursor 
mass tolerances, the fragments are instead generated on the fly to avoid excessive file sizes.  
 
To achieve maximum speed, AlphaPept employs a very rapid fragment counting step to determine 
initial peptide spectrum matches (PSMs). As this step only involves addition and subtraction of 
elements in numerical arrays, the machine code produced by Numba is very efficient and easily 
parallelized. This leaves a much smaller number of peptides that have at least a minimum number of 
fragment matches to the experimental spectrum. (This is similar to the Morpheus score (Wenger and 
Coon 2013), which also computes the fraction of msms signals accounted for by the match.) For the 
human proteome and mass measurement accuracy of parts per million, the initial millions of 
comparisons are decreased to a maximum of top-n remaining candidates per msms spectrum 
(typically 10). This enables more computationally expensive scoring in a second step. Different 
scores can be implemented in AlphaPept, and by default we chose the widely used X!Tandem score 
(Craig and Beavis 2003). Note that the sole function of this score is to rank the PSMs, whereas 
statistical significance is determined by counting reverse database hits and by machine learning (see 
below).  
 
We perform a first search for the purpose of recalibrating the mass scale as a function of elution time 
(Fig. 4B). Here, we use weighted nearest neighbor regression instead of binning by retention time 
(explained in the accompanying Jupyter Notebook). The k-nearest neighbors regressor that we 
selected allows non-linear grouping in several dimensions simultaneously (retention time and mass 
scale in the case of Orbitrap data and additionally ion mobility in the case of timsTOF data).  
 
Having recalibrated the data, the main search is performed with an adapted precursor tolerance. We 
furthermore calculate the matched ion intensity, matched ions, neutral loss matches for further use 
and reporting together with charge, retention time and other data. 
 
To demonstrate the speed up achieved by our architecture and the performance decorator, we timed 
illustrative examples (Fig. 4C). On a HeLa cell line proteome acquired in a single run, comparing 
260k spectra to 5 million database entries, the computing time in pure Python was about 23 h. This 
decreased to 126 s when employing Numba (> 500x improvement), to 105 s when using Numba with 
CuPy on GPU and further to 13 s on multi-threaded CPU (see companion Figure Notebook). The 
GPU acceleration is not larger because the code is already very efficient on CPU and some workflow 
tasks are memory bound instead of computationally bound. Improved memory management on GPU 
could further decrease GPU computational time. In any case, AlphaPept reduces the PSM matching 
step to an insignificant part total computation time. 
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Figure 4 Database search 
A The FASTA processing notebook contains functionality to calculate fragment masses from FASTA files 
which are saved in an HDF5 container for subsequent searches. B Initially, a first search is performed, and 
masses are subsequently recalibrated. Based on this recalibration, a second search with more stringent 
boundaries is performed. C Using the decorator strategy, the search can be drastically speeded up, from 23 h 
in a pure Python implementation to seconds with Numba and CuPy.  

 
 

Machine learning based scoring and FDR estimation - Assessing the confidence of PSMs requires a 
scoring metric that separates true (correctly identified) from false (wrongly identified) targets in the 
database. Multiple defined features are calculated by the AlphaPept search engine and used in a score 
to rank the targets. A nonsense database of pseudo-reversed sequences where the terminal amino acid 
remains unchanged (de Godoy et al. 2008) is used to directly estimate the False Discovery Rate (FDR) 
by counting reverse hits. Score thresholds subsequently decide which targets should be considered 
identified. To further validate this approach and to ensure accurate FDR estimation across different 
development stages in AlphaPept, our GitHub testing routine includes an empirical two species FDR 
test based on an ‘entrapment strategy’ (Muntel et al. 2019).  
 
In recent years, machine learning has gained increasing momentum in science in general, but also in 
its specific applications to MS data analysis. One of the first of these was the combination of multiple 
scoring metrics to a combined discriminant score that best separates high scoring targets from decoys. 
This was initially integrated into PSM scoring through an external reference dataset to train the 
classifier (Keller et al. 2002). The widely used Percolator approach subsequently employed a semi-
supervised learning approach that was trained directly on the dataset itself (Käll et al. 2007). This 
automatically adapts the ML model to the experimental data and along with other MS analysis tools 
(MacLean et al. 2010; Röst et al. 2014; Teleman et al. 2015; Fondrie and Noble 2021; Rosenberger 
et al. 2017) we also employ semi-supervised learning for PSM scoring in AlphaPept.  
 
The AlphaPept scoring module falls into five parts: (1) feature extraction for all candidate PSMs, (2) 
selection of a candidate subset, (3) training of a machine learning classifier, (4) scoring of all 
candidate PSMs and (5) FDR estimation by a target-decoy approach (Fig. 4A). Most features for 
scoring the candidate PSMs are directly extracted from the search results, such as the number of b- 
and y-ion hits and the matched ion intensity fraction. Some additional features are subsequently 
determined, including the sequence length and the number of missed cleavages. After feature 
extraction, a subset of candidate PSMs is selected with an initial 1% FDR threshold based only on 
the X!Tandem score (Fig. 4B). Together with an equal number of randomly selected decoys, this 
creates a balanced dataset for machine learning. This is split into training and test sets (20% vs. 80%) 
and provides the input of a ML classifier. We chose a standard scikit-learn random forest classifier 
as it performed similarly to XGBoost with fewer dependencies on other packages. We first identify 
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optimal hyper-parameters for the classifier with a grid-search via five-fold cross-validation. The 
resulting best classifier optimally separates target from decoy PSMs on the test set. Applying the 
trained classifier to the entire set of candidate PSMs yields discriminant scores that are used to 
estimate q-values based on the classical target-decoy competition approach.  
 
The contribution of different features to the discriminant score for an exemplary tryptic HeLa sample 
is shown in Figure 4C. Interestingly, for our data, the number of matched y-ions alone outperforms 
the basic search engine score and most of the top-ranking features are related to the number of 
matched ions and their intensity. The ML algorithm markedly improved the separation of targets vs 
decoys, retrieving a larger number of PSMs at every q-value (Fig. 4D). ML-based scoring in 
AlphaPept improved identification rates by 15% at a 1% FDR at the PSMs level, in line with previous 
efforts (Käll et al. 2007). AlphaPept allows ready substitution of the underlying PSM score and 
machine learning algorithms. Furthermore, additional features to describe the PSMs are readily 
integrated, such as ion mobility or predicted fragment intensities. We envision that this kind of 
flexibility will enable continuous integration of improved workflows as well as novel ML techniques 
into AlphaPept.  
 
Once a set of PSMs at a defined FDR is identified, protein groups are determined via the razor protein 
approach (Nesvizhskii and Aebersold 2005). Here, peptides that could potentially map to multiple 
unique proteins are assigned to the protein group that already has most peptide evidence. We 
determine protein-level q-values by selecting the best scoring precursor per protein, followed by FDR 
estimation by target-decoy competition similar to the peptide level (Nesvizhskii 2010; Savitski et al. 
2015; The et al. 2016; Gupta and Pevzner 2009). Finally, we validated the scoring and FDR 
estimation in AlphaPept with the entrapment strategy mentioned above, by analyzing a HeLa sample 
with a mixed species library, containing targets and decoys derived from both a human FASTA and 
a FASTA from Arabidopsis thaliana. This revealed that AlphaPept provides accurate q-value 
estimates, reporting approximately the same number of Arabidopsis thaliana proteins as decoy 
proteins at 1% protein FDR. 
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Figure 5: Machine learning-based scoring and FDR estimation 
A We train a Random Forest (RF) classifier on a subset of candidate PSMs to distinguish targets from decoys 
based on PSMs characteristics. A semi-supervised machine learning model is applied with the following steps: 
(1) extraction of all candidate PSM scores, (2) selection of a PSM subset for machine learning, (3) training of 
a RF classifier, and (4) application of the trained classifier to the full set of PSM candidates. Finally, the 
probability of the RF prediction is used as a score for subsequent FDR control (5). B Training of the classifier 
(step 4 in panel A) follows a train-test split scheme where only a fraction of the candidate subset is used for 
training. Using stringent cross-validation, multiple hyperparameters are tested to achieve optimal RF 
performance. The best classifier is benchmarked against the remaining test set. C Example feature importance 
for an Orbitrap test set, where the number of y-ion hits is the highest contributing factor to the model. Note 
that the RF algorithm can utilize any database identification score such as the X!Tandem score chosen here, 
which is the second most important feature. See the AlphaPept workflow and files Notebook for an explanation 
of features. D Optimized identification with the ML score. Compared to the X!Tandem score alone, the ML 
optimization identified about 15% more PSMs for the same q-value. 
 
 
Label-free quantification - The ultimate goal of a proteomics experiment is to derive functional 
insights or assess biomarkers from quantitative changes at the protein level, to which peptide 
identifications are only means to an end. Algorithmically this quantification step entails either the 
determination of isotope ratios in the same scans (for instance SILAC, TMT or EASI-tag ratios) or 
the somewhat more challenging problem of first integrating peaks and then deriving quantitative 
ratios across samples (label-free quantification), which we focus on here. We initially adapted the 
MaxLFQ pipeline for label-free quantitative proteomics data (Cox et al. 2014). The first task is to 
determine normalization factors for each run as different LC MS/MS runs need to be compared – 
potentially spaced over many months in which instrument performance may vary – and as total 
loading amounts likewise vary for instance due to pipetting errors. The basic assumption is that the 
majority of peptides are not differentially abundant between different samples. This allows deriving 
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the run-specific normalization factors by minimizing the between-sample log peptide ratios (Cox et 
al. 2014) (Note that this assumption is not always valid and can be restricted to certain protein 
classes.). In a second step, adjusted intensities are derived for each protein, such that protein 
intensities between different MS runs can be compared. To this end we derive the median peptide 
fold changes that maximize consistency with the peptide evidence. 
 
The normalization, as well as protein intensity profile construction, are quadratic minimization 
problems of the normalization factors or the intensities, respectively. Such minimization problems 
can be solved in various ways but one fundamental challenge is that these algorithms have a time 
complexity of O(n2), meaning that the computation time increases quadratically with the number of 
comparisons. One strategy to overcome this limitation is to only perform minimization on a subset 
of all possible pairs (termed ‘FastLFQ’) (Cox et al. 2014). Despite this, the computation time of the 
underlying solver will determine the overall runtime and accounts for the long run times on very large 
datasets. However, a variety of very efficient solvers that are based on different algorithms are 
contained in the Python SciPy package (SciPy 1.0 Contributors et al. 2020). To test these approaches, 
we created an in silico test dataset with a known ground truth (see Quantification Notebook). 
Comparing different solvers using our benchmarking set uncovered dramatic differences in precision, 
runtime and success rate (Fig. 6A). Among the better performing algorithms were the least-squares 
solvers that were previously used. The Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B), 
Sequential Least Squares Programming (SLSQP) and Powell algorithms were particularly fast and 
robust solutions being up to 16x quicker than the Trust Region Reflective algorithm (trf) from the 
default least-squares solver. More remarkably, they were able to optimize much better to our known 
ground truth. Of all four tested optimizers, the mean error of trf was, on average 24% worse. Being 
able to readily switch between different solvers provided by SciPy allows us to fall back on other 
solvers if the default solver fails, i.e. AlphaPept will switch from L-BFGS-B to Powell if the solution 
does not converge. 
 
We compared our method to MaxLFQ in a quantitative two-species benchmarking dataset, in which 
E. coli proteins change their abundance by a factor of six between conditions, while human proteins 
do not change (Meier et al. 2018). To specifically assess the benefits of the new optimization strategy, 
we first tested the algorithm directly on the MaxQuant output (see companion Notebook for Figure 
6). Both approaches clearly separated human and E. coli proteins, however, the standard deviation 
was smaller when applying the AlphaPept optimization algorithm, which also has fewer outlier 
quantifications (Fig 6B), supporting the analysis of the in-silico test set. Comparing results of the 
complete workflow with AlphaPept on the same files further improved identifications and 
quantifications.  
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Figure 6: Algorithm selection and performance of label-free quantification  
A Timings of different, highly optimized solvers from the SciPy ecosystem, to extract optimal protein intensity 
ratios in AlphaPept. Solvers showed drastic differences in speed, closeness to ‘ground truth’, and proportion 
of successful optimizations on in-silico test data. Based on these tests, AlphaPept employs a hybrid 
optimization strategy that uses L-BFGS-B and Powell for optimized performance, robustness and speed. B 
Comparing the AlphaPept LFQ solver on MaxQuant output data demonstrates similar separation in mixed-
species datasets with smaller standard deviations. C Applying AlphaPept directly on the same dataset further 
improves identifications and quantification accuracy.  
 
Match-between-runs (MBR) and dataset alignment – We implemented functionality to transfer the 
identifications of MS1 features to unidentified MS1 features of other runs (match-between-runs). 
First, we align multiple datasets on top of each other by applying a global offset in retention time, 
mass and – where applicable – ion mobility. To determine offsets for all runs, we first compare all 
possible pairs of runs and calculate the median offset from one dataset to another based on the 
precursors that were identified in both. As these offsets are linear combinations of each other, i.e., 
the offset from dataset A to dataset C should be the offset from dataset A to B and B to C; this 
becomes an overdetermined equation system, which we solve by a weighted linear regression model 
with the number of shared precursors as weights. 
 
After dataset alignment, we group precursors of multiple runs and determine their expected properties 
as well as their probability density and create a library of precursors. Next, we take the unidentified 
MS1 features from each run and extract the closest match from the library of precursors. Finally, as 
we know the probability density of each feature, we can calculate the Mahalanobis distance from 
each identification transfer and use this as a probability estimate to assess the likelihood that a match 
is correct. Further information about the alignment and matching algorithm can be found in the 
Matching notebook.  
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Benchmarking AlphaPept on large data sets – A prime goal of the AlphaPept effort is robustness and 
speed. To showcase the usability of AlphaPept for large scale studies we re-analyzed 200 HeLa 
proteomes from a recently published long-term performance test (Bian et al. 2020). To confirm 
comparable identification performance in the initial analysis, which was done with MaxQuant, we 
evaluated the number of uniquely identified protein groups and PSMs per group. This yielded a 
median of 4277 unique protein groups and 43,872 unique peptides per experimentally defined group, 
as expected. Next, we compared the protein level quantification. The median coefficient of variation 
without our Python maxLFQ implementation was 27.1% and 9.2% after LFQ optimization. For 90% 
of protein groups, CVs were below 20% with LFQ optimization and below 54% without. 
Investigation of each computational task revealed that a large part is spent on importing raw data and 
feature finding. Searching and scoring are highly optimized and contribute only a small fraction of 
the overall computing time. Operations across files such as LFQ alignment and matching again make 
up a large part of computation time. 
 
 

 
 

Figure 7: Benchmarking AlphaPept on 200 HeLa proteomes 
A total of 200 DDA HeLa cell proteomes – the 10 cycle long term performance test from Kuster and 
coworkers (181 Gbyte) (Bian et al. 2020)– was analyzed by AlphaPept. A Identification performance at the 
protein group level. B Identification performance at the peptide level. C Quantification performance with or 
without MaxLFQ optimization. For 90% of protein groups, CVs are below 20% and 54%, respectively. D 
Timing of the AlphaPept computational pipeline. Search through scoring are highly optimized and contribute 
little to overall computation time.  
 
 
Continuous validation on standard datasets – Our current continuous integration pipeline uses a 
range of data sets typical for MS workflows. These include standard single shot runs, such as HeLa 
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quality control (QC) runs, as well as recently published studies. For every addition to the main branch 
of the code base, AlphaPept reanalyzes these files fully automatically, allowing extensive systems 
checks. Additionally, these checks can be manually triggered at any time and therefore enable swift 
validation of proposed code changes prior to submitting pull-requests. This makes comparing studies 
that were analyzed with different software versions much more transparent. To further increase this 
idea of transparent performance tracking, we automatically upload summary statistics, such as 
runtime, number of proteins and number of features for each run to a database and visualize these 
metrics in a dashboard (Extended methods). Table 1 shows example tracking metrics from the 
database. 
 

Version Test file Processing time (min) Number of features Number of peptides 

0.2.8 HeLa Orbitrap 19 218792 41777 

0.2.8 HeLa timsTOF 102 231545 54058 

0.2.9 HeLa Orbitrap 19 218780 41939 

0.2.9 HeLa timsTOF 113 231545 66776 

0.2.10 HeLa Orbitrap 19 218779 41949 

... ... ... ... ... 

0.3.25 HeLa timsTOF 105 664992 76217 

0.3.26 HeLa Orbitrap 18 260709 53522 

0.3.26 HeLa timsTOF 88 664992 77464 

0.3.27 HeLa Orbitrap 21 260622 54283 

0.3.27 HeLa timsTOF 89 664992 77162 

 
Table 1: Example performance tracking metrics for different AlphaPept versions extracted 
from the database. 
 
 
AlphaPept user interface and server – A central element for any software tool is ease of use for the 
end user. In the most basic setup, this is determined by the accessibility of the GUI. Following recent 
trends, we decided on server-based technology for AlphaPept. In a basic setup, the web interface is 
called by connecting to a local server instance on the user’s laptop or local workstation (Fig. 8A) via 
a browser. For more demanding pipelines, AlphaPept can be run on a powerful processing PC and be 
accessed from multiple other devices. This makes access to AlphaPept platform independent, 
including mobile devices. 
 
Adding server functionality typically comes at the cost of maintaining a dedicated API and 
infrastructure. For AlphaPept we make use of a very recent but already very popular Python package 
called streamlit (www.streamlit.com), which was developed to facilitate the sharing of machine 
learning models. By only adding one additional Python package, we have access to a powerful and 
responsive server infrastructure. Here, the web interface serves merely as an input wrapper to gather 
the required settings and display results and starts the AlphaPept processing in the background. 
 
AlphaPept workflow management system – Importantly, the server-based user interface extends the 
processing functionality of AlphaPept from only processing individual experiments to a continuous 
processing and monitoring framework. The core processing function of AlphaPept accepts a 
dictionary-type document to process an experiment, with defined parameters per setting. To store 
these settings, we chose YAML, a standard human-readable data-serialization language, resulting in 
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files of only a few kilobytes in size. This ensures that they can be modified programmatically and 
easily checked with common editors.  
 
The settings structure is used by the AlphaPept GUI to build a folder-based workflow management 
system. It creates three folders in the user folder (‘Queue’, ‘Failed’, and ‘Finished’) and monitors 
them for new data. When defining a new experiment within the GUI, a settings YAML file is created 
in the Queue folder, and the core function will start processing. This allows defining multiple 
experiments, which will then be processed one after another. YAML files of processed runs will be 
moved to the ‘Finished’ or ‘Failed’ folder (Fig. 8B). 
 
We chose this folder-based processing queue as this allows manual inspection of the processing queue 
by simply checking the files in the folders. Furthermore, computational alterations of the processing 
queue are straightforward by writing custom scripts that copy settings files generated elsewhere to 
the queue folder. AlphaPept has a file watcher module that can monitor folders for new raw files and 
automatically add them to the processing queue immediately after acquisition is finished. Its modular 
structure can easily be extended with custom code for integration into larger processing environments 
with database-based queuing systems. Refer to the interface notebook, which calls the wrapper 
function and allows customization of the pipeline. 
 
Visualization of results and continuous processing – For visualization of tabular or summary statistics 
results, our streamlit application utilizes the ‘Finished’ folder structure where it stores readily 
accessible summary information of previously processed files (Fig. 8C). AlphaPept has a History tab 
that compiles these previous results to show performance over time or across analyzed MS runs (Fig. 
8D). Here, the user can choose to plot various summary statistics such as identified proteins or 
peptides as well as chromatographic information such as peak width or peak tailing. As a particular 
use case, this provides a standard interface which allows instant QC run evaluation in combination 
with the file watcher. 
 
To inspect an individual experiment, AlphaPept’s browser interface can also plot identification and 
quantification summary information. Furthermore, basic data analysis functions such as volcano or 
scatter plots and Principal Component Analysis (PCA) are provided. This is based on streamlit and 
scikit-learn functionality and can therefore be readily extended. AlphaPept exports the analysis results 
(quantified proteins and peptides) in tabular format to the specified results path so that it can be 
readily used for other downstream processing tools such as Perseus (Tyanova et al. 2016) or the 
recently introduced CKG (Santos et al. 2020).  
 
AlphaPept deployment and integration – The utility of a computational tool critically depends on 
how well it can be integrated into existing workflows. To enable maximum flexibility and to address 
all major use cases, AlphaPept offers multiple ways to install and integrate it.  
 
First, we provide a one-click installer solution that is packaged for a standard Windows system 
obviating additional installation routines. It provides a straightforward interface to the web-based 
GUI. We chose Windows for the one-click solution as it is the base OS for the vendor-provided 
acquisition and analysis software and most users. The one-click installation also has a command-line 
interface (CLI) for integration into data pipelines. 
 
Next, AlphaPept can be used as a module in the same way as other Python packages. This requires 
setting up a Python environment to run the tool, which also contains all the functionality of the 
previously described CLI and GUI. Compared to the Windows one-click installer, the Python module 
extends the compatibility to other operating systems. While Python code is in principle cross-
platform, some third-party packages can be platform bound, such as the Bruker feature finder or 
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DLLs required to read proprietary file types. The modular nature of the AlphaPept file system allows 
to preprocess files and continue the analysis on a different system (e.g., feature finding and file 
conversion on a Windows acquisition PC and processing on a Mac system). 
 
Finally, the Python module makes the individual functions available to any Python program. This is 
particularly useful to integrate only parts of a workflow in a script or to optimize an individual 
workflow step. Besides the nbdev notebooks that contain the AlphaPept core code, we provide several 
sandboxing Jupyter Notebooks that show how individual workflow steps can be called and modified. 
In this way, AlphaPept allows the creation of completely customized workflows. 
 
 
 

 
 

Figure 8: Alphapept user interface, workflow management, deploying and integrating  
A The AlphaPept GUI is based on a server architecture that can be installed on a workstation and used locally. 
Additionally, it can be installed on a server and accessed remotely from multiple workstations in the network. 
B AlphePept processing pipeline. The AlphaPept GUI creates three folders for its processing system. New 
experiments are defined within the interface and saved as YAML files in the Queue folder with automatically 
triggered processing. C Example plots from the History and Results Tab in AlphaPept: Overview of the 
number of features, peptides and protein groups per injected sample (left panel). Graphing retention time 
tailing as a function of acquistion date, as an illustration of using AlphaPept for quality assurance. 
 
 
AlphaPept processing times – To give the reader an impression of typical processing timings for each 
of these deployment variants, we ran AlphaPept on various hardware for several use cases: laptop, 
office PC, workstation and cloud (Table 1). AlphaPept can be readily employed with cloud providers 
such as Amazon Web Services. We tested our default testing pipeline (see timing table below) on 
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two different Amazon EC2 instances (t3a.2xlarge: 0.42 Eur/h and t3.xlarge: 0.22 Eur/h), an incurred 
computational costs of 0.22 and 3.82 Euros for one 120 min Orbitrap HeLa file and 8 timsTOF files, 
respectively, when processed in a European location. Computational costs can be further improved 
by choosing resource-optimized hardware or buying compute power in advance. 
 
For a typical proteomics laboratory, we envision AlphaPept running in continuous mode, to 
automatically process all new files. This allows continuous feedback about experiments while 
drastically speeding up computation when subsequently combining multiple processed files into 
experiments and experiments into an overall study, because the computational steps that do not 
change (e.g., raw conversion, database generation or feature finding) can be reused. To illustrate this, 
the test set with 8 Bruker files from PXD010012 takes 194 minutes on a Workstation with 
preprocessing and 23 minutes when using preprocessed files. 
 

  

Laptop 
Macbook Pro 
macOS Big Sur 
i9 2.3 GHz x 8 
32 Gb RAM 

Office Pc 
Optiplex 7080 
Windows 10 
i9 3.7 GHz x10 
64 Gb RAM 
 

Workstation 
Custom 
Windows 10 
i9 3.5 GHz x12 
128 Gb RAM 
 

Cloud I 
AWS (t3a.2xlarge) 
Windows Server 
EPIC 2.2 GHz x4 
32 Gb RAM 
 

Cloud II 
AWS (t3.xlarge) 
Windows Server 
XEON 2.4 GHz x2 
16 Gb RAM 

IRT Sample* 
(Thermo) Full 

1 1 2 3 2 

HeLa 120 min 
(Thermo) 

Full 
23 16 19 40 41 

Preprocessed 
6 4 5 11 12 

PXD006109 - 6 
files (Thermo) 

Full 
36 17 21 46 73 

Preprocessed 
30 8 s 18 24 

IRT Sample 
(Bruker) Full 

** 1 2 3 2 

HeLa 120 min 
(Bruker) 

Full 
** 57 111 131 399 

Preprocessed 
6 6 7 16 19 

PXD010012 - 8 
files (Bruker) 

Full 
** 242 194 790 893 

Preprocessed 
62 24 23 85 132 

 
Table 2: Running times of AlphaPept for various hardware (timings in minutes)  
* IRT = low complexity mixture of peptides (internal retention time standard) 
** to process Bruker files on Mac Os X, we preprocessed them on Windows 
 
Being able to import AlphaPept as a Python package also lowers the entry barrier of proteomics 
analysis workflows for individual researchers and laboratories with little computational 
infrastructure, as it makes it compatible with platforms like Google Colab, a free cloud-based 
infrastructure built on top of Jupyter notebooks with GPUs. This allows processing without having 
to set up software on specialized hardware and allows direct modification of the underlying 
algorithms. We provide an explanatory notebook for running a workflow on Google Colab, including 
a 120 min HeLa example file that has been convered on the Windows acquisition computer. This also 
highlights how the modular HDF5 file format allows us to move the MS data between operating 
systems.  
 
 
 

DISCUSSION 
 
Here we have introduced AlphaPept, a computational proteomics framework where the relevant 
algorithms are written in Python itself, rather than Python being used only as a scripting layer on top 
of compiled code. This architectural choice allows the user to inspect and even modify the code and 
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enables seamless integration with the tools of the increasingly powerful and popular Python scientific 
ecosystem. The major drawback of such an approach would have been the slow execution speed of 
pure Python, however extensive use of the Numba just in time compiler – on multiple CPUs or a 
GPU - makes AlphaPept exceptionally fast, as we have shown in this manuscript. Together with the 
use of recently developed browser-based deployment, AlphaPept covers the full range of potential 
users from novice users to systems administrators wishing to build large cloud pipelines.  
 
A related and important design objective of AlphaPept was to enable a diverse user community and 
invite community participation in its further development. To ensure quality, reproducibility and 
stability, we implemented a large suite of mechanisms from unit through end-to-end tests via 
automatic deployment tools. This in turn allows us to streamline the integration of community 
contributions after rigorous assessment. Furthermore, GitHub provides state-of-the-art tools and 
mechanisms to allow the effective collaboration of diverse and dispersed developer communities.  
 
Currently, AlphaPept provides functionality for DDA proteomics but we are in the process of 
enabling analysis of DIA data, ultra-fast access to and visualization of ion mobility data (AlphaTims, 
https://github.com/MannLabs/alphatims), deep learning for predicted peptide properties and 
improved quantification, all made possible by its modular design.  
 
One of the large goals of AlphaPept is to ‘democratize’ access to computational proteomics. To this 
end, besides implementation in Python, we adopted the ‘literate programming’ paradigm which 
integrates documentation and code. We adopted the nbdev package, providing both beginner and 
expert computational proteomics researchers with an easy and interactive ‘on ramp’. In our case this 
takes the form of currently 12 Jupyter notebooks dealing with all the major sub tasks of the entire 
computational pipeline from database creation, raw data import all the way to the final report of the 
results. We imagine that students and researchers with novel algorithmic ideas can use this paradigm 
to add their functionality in a transparent and efficient manner, without having to re-create the entire 
pipeline. This could especially enable increasingly powerful machine learning and deep learning 
technologies to be integrated into computational proteomics (Torun et al. 2021; Wen et al. 2020; 
Meyer 2021). 
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to GPU support and code acceleration. All authors contributed ideas, performed testing and wrote the 
manuscript. 
 
 
EXTENDED METHODS 
 
Notebook availability. 
All notebooks are available in the repository on GitHub. The documentation created based on the 
notebooks is available here: https://mannlabs.github.io/alphapept/. Additional information about 
code not covered in the Notebooks presented here can be found in the Documentation 
(https://mannlabs.github.io/alphapept/additional_code.html). 
A cloud hosted Notebook with an example data file is provided at the free Google Colab site: 
https://colab.research.google.com/drive/163LTlyzBCDgyCkSJiikbmsnny_EiQ7SG?usp=sharing 
 
MongoDB Dashboard 
The continuous integration pipeline has the action “Performance test pyinstaller”. This action 
freezes the current Python environment into an executable and runs the test files. The results of 
these tests are uploaded to a noSQL database (MongoDB) for the tested version number. Key 
performance metrics are visualized in charts here: 
https://charts.mongodb.com/charts-alphapept-itfxv/public/dashboards/5f671dcf-bcd6-4d90-8494-
8c7f724b727b 
 
timsTOF and Orbitrap HeLa samples – The test files comprise representative single run analyses of 
complex proteome samples. Human HeLa cancer cells were lysed in reduction and alkylation buffer 
with chloroacetamide as previsouly described (Kulak et al. 2014), and proteins were enzymatically 
digested with LysC and trypsin. The resulting peptides were de-salted and purified on 
styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS) StageTips before injection into an 
EASY nLC 1200 nanoflow chromatography system (Thermo Scientific). The samples were loaded 
on a 50 cm x 75 µm column packed in-house with 1.9 µm C18 beads and fitted with a laser-pulled 
emitter tip. Separation was performed during 120 min with a binary gradient at a flow rate of 
300 nL/min. The LC system was coupled online to either a quadrupole Orbitrap (Thermo Scientific 
Orbitrap Exploris 480) or a trapped ion mobility – quadrupole time-of-flight (Bruker timsTOF Pro 2) 
mass spectrometer. Data were acquired with standard data-dependent top15 (Orbitrap) and PASEF 
methods (timsTOF), respectively.  
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timsTOF and Orbitrap iRT samples – 11 iRT peptides (https://biognosys.com/product/irt-kit/) were 
separated via a 5.6 min Evosep gradient (200 “samples per day”) yielding test data with low 
complexity, that facilitated quick testing of computational functionality. An Evosep One liquid 
chromatography system (Evosep) was coupled online with a trapped ion mobility spectrometry 
(TIMS) quadrupole time-of-flight (TOF) mass spectrometer (timsTOF pro, Bruker Daltonics). iRT 
standards (Biognosys) were loaded onto Evotips according to the manufacturers’ instructions and 
separated with a 4 cm x 150 µm reverse-phase column with 3 µm C18-beads (Pepsep). The analytical 
column was connected with a zero-dead volume emitter (10 µm) placed in a nano-electrospray ion 
source (CaptiveSpray source, Bruker Daltonics). Mobil phase A contained 0.1 vol% formic acid and 
water and mobil phase B of 0.1 vol% formic acid and acetonitrile. The sample was acquired with the 
dda-PASEF acquisition mode. Each topN acquisition mode contained four PASEF MS/MS scans and 
the accumulation and ramp time were both 100 ms. Only multiply charged precursors over the 
intensity threshold of 2500 arbitrary units (a.u.) and within a m/z-range of 100 – 1700 were subjected 
to fragmentation. Peptides that reached the target intensity of 20,000 a.u. were excluded for 0.4 min. 
The quadrupole isolation width was set to 2 Th below m/z of 700 and 3 Th above a m/z value of 700. 
The ion mobility (IM) range was configured to 0.6 – 1.51 Vs cm-2 and calibrated with three Agilent 
ESI-L TuneMix Ions (m/z, IM: 622.02, 0.98 Vs cm-2; 922.01, 1.19 Vs cm-2; 1221.99, 1.38 Vs cm-2). 
The collision energy was decreased as a function of the ion mobility, starting at 1.6 Vs cm-2 with 59 
eV and ending at 0.6 Vs cm-2 with 20 eV. 
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