Michelle Lynn Gill

Applied Research Manager, NVIDIA Virtual Cell Team

profile_bw.jpg

I am an Applied Research Manager on NVIDIA’s Virtual Cell team. Our team uses data, deep learning, and HPC to develop models that simulate cellular states. My focus is on the benchmarks and development of supporting tools that help evaluate and improve these models.

Previously I was a Senior Machine Learning Engineer and Data Scientist at BenevolentAI and a member of Arthur Palmer’s research group where I developed and applied nuclear magnetic resonance (NMR) spin relaxation experiments to understand how enzyme dynamics are critical to biological function.

recent publications

  1. E. Sevgen, J. Moller, A. Lange, J. Parker, S. Quigley, J. Mayer, P. Srivastava, S. Gayatri, D. Hosfield, M. Korshunova, M. Livne, M. Gill, R. Ranganathan, A.B. Costa, and A.L. Ferguson
    ProT-VAE: Protein transformer variational autoencoder for functional protein design.
    Proceedings of the National Academy of Sciences 122 (2025)
  2. P. St. John, D. Lin, P. Binder, M. Greaves, V. Shah, J. St. John, A. Lange, P. Hsu, R. Illango, A. Ramanathan, A. Anandkumar, D.H. Brookes, A. Busia, A. Mahajan, S. Malina, N. Prasad, S. Sinai, L. Edwards, T. Gaudelet, C. Regep, M. Steinegger, B. Rost, A. Brace, K. Hippe, L. Naef, K. Kamata, G. Armstrong, K. Boyd, Z. Cao, H.Y. Chou, S. Chu, A. Santos Costa, S. Darabi, E. Dawson, K. Didi, C. Fu, M. Geiger, M. Gill, D.J. Hsu, G. Kaushik, M. Korshunova, S. Kothen-Hill, Y. Lee, M. Liu, M. Livne, Z. McClure, J. Mitchell, A. Moradzadeh, O. Mosafi, Y. Nashed, S. Paliwal, Y. Peng, S. Rabhi, F. Ramezanghorbani, D. Reidenbach, C. Ricketts, B.C. Roland, K. Shah, T. Shimko, H. Sirelkhatim, S. Srinivasan, A.C. Stern, D. Toczydlowska, S.P. Veccham, N.A.E. Venanzi, A. Vorontsov, J. Wilber, I. Wilkinson, W.J. Wong, E. Xue, C. Ye, X. Yu, Y. Zhang, G. Zhou, B. Zandstein, A. Chacon, P. Sohani, M. Stadler, C. Hundt, F. Zhu, C. Dallago, B. Trentini, E. Kucukbenli, T. Rvachov, E. Calleja, J. Israeli, H. Clifford, R. Haukioja, N. Haemel, K. Tretina, N. Tadimeti, and A.B. Costa
    BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery.
    arXiv (2024)
  3. M.T. Strauss, I. Bludau, W.F. Zeng, E. Voytik, C. Ammar, J. Schessner, R. Illango, M.L. Gill, F. Meier, S. Willems, and M. Mann
    AlphaPept, a modern and open framework for MS-based proteomics.
    Nature Communications 15 (2024)